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1. Introduction 

 

One of the initial steps in any effective risk management strategy is to accurately measure 

market risks. Portfolio diversification, the tool most often used to protect investments during 

financial crises, relies on it. Currently, quantitative methods are commonly used in risk 

management; and there is a vast financial literature about different techniques to measure market 

risks (e.g., Britten-Jones and Schaefer, 1999; Berkowitz and O’Brien, 2002; and Guidolin and 

Timmermann, 2006).2  

However, all approaches assume a complete price dataset; and thus they do not take into 

account portfolios with incomplete historical data of prices due to infrequently traded assets.3 

Infrequent (or thin) trading is pervasive and deeply affects all financial markets worldwide. 

Infrequent trading is very common in emerging markets (e.g., Lim et al., 2009); but it is also 

observable in some assets in well developed markets such as the NYSE (e.g., Roll et al., 2007), 

the Canadian stock market (e.g., Boabang, 1996), or the stock option market at the CBOE (e.g. 

Chan et al., 2002). The infrequent trading problem has been typically dealt by practitioners 

through the replication of the price of last transaction until that a new price appears (which is 

equivalent to assume that the daily returns are equal to zero for the days without prices). 

Nevertheless this practice could generate biases (e.g., Kallunki, 1997) or autocorrelations which 

could affect the mean reversion processes of the assets (e.g, Millet et al., 1994). Surprisingly, 

however, the literature exploring market risk measures for portfolios within an environment of 

infrequent trading appears to be rather limited. Therefore, the main purpose of our study is to fill 

this gap by introducing a methodology to measure market risks on portfolios with thinly traded 

securities.   

We use one of the most popular market risk measures in banking and finance: the Value-at-

Risk (VaR). The VaR is a popular measure because it answers the following simple question: 

given the probability α, what is the expected loss of an asset (or portfolio) over a time interval? 

The VaR has the property that risk is expressed in monetary units, which is simple and easy to 

                                                 
2 See Duffie and Pan (1997); Manganelli and Engle (2001); or Christoffersen (2003) for a review of risk measures 
3 Only risk measures based on option implied volatilities do not use historical information (where the securities that 
need risk measures are the underlying assets of the options). However, few assets have options traded in option 
markets. Moreover, the high volume traded on the underlying securities (which is not a characteristic of assets with 
infrequent trading) is one of the main selection factors applied by options exchanges to choose a security and thus to 
introduce option contracts using it as an underlying asset (see Mayhew and Mihov, 2004). Therefore, it is unlikely 
that thinly traded assets have traded options in option exchanges. 
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understand. In addition, the VaR is not only used for portfolio management strategies. The VaR is 

also particularly critical in the financial sector where regulatory agencies periodically require 

financial institutions to report their risk exposures, in order to set up their minimum capital levels 

of reserves (e.g., Jackson et al., 1997; and Pérignona and Smith, 2010).4 For instance, if the VaR 

is underestimated, then there are high chances of incurring large losses and penalties that may 

come from regulatory agencies. Conversely, overestimations of the VaR may lead financial 

institutions to retain unnecessary reserves implying high costs of capital.  

We propose a methodology based on three stages. First, we obtain a complete price dataset 

using an asset pricing model estimated by the Kalman filter with the incomplete panel of prices. 

In this stage, we estimate the asset pricing model to characterize prices and thus to generate a 

complete historical dataset of model prices and returns. The Kalman filter is a well-known 

recursive method to estimate the parameters in dynamic models, which can also be used in 

environments with incomplete panels by a simple adjustment. The most important characteristic 

of the Kalman filter is that we are able to obtain an estimation of a pricing model even for days 

with very few price observations. Second, we estimate the market risk measures with the 

complete panel data of prices generated in the first stage. Since in the implementation of our 

methodology we use VaR measures, we calculate them by eight different methods and in 

different sub-periods as robustness checks. Third, we back-test the market risk measures with the 

original incomplete historical panel of observable prices to verify the reliability of the estimates. 

In our implementation, we should observe that the percentage of times in which losses exceed 

the calculated VaR values to be close to the confidence level α at which the VaR measures were 

estimated. We propose an ad-hoc procedure to make efficient use of all the available information 

in the back-testing process. The main advantage of the ad-hoc procedure is that allows us to 

back-test the complete portfolio with thinly traded assets; which is essential for asset allocation 

strategies.5  

                                                 
4 See Basel Committee (1996a, 1996b) for a regulatory perspective.  
5 In our initial attempts to find risk measures in a thinly traded environment, we directly used the Kalman filter to 
estimate the VaR measures with the incomplete panel of market prices (i.e. without using an asset pricing model to 
generate an initial complete dataset; or equivalently without Stage I). However, our results improved significantly 
when we incorporated an asset pricing model to obtain the complete panel of prices (i.e. Stage I). This is due to the 
fact that asset pricing models describe assets very well, since that is their objective; which is very useful to 
characterize prices when there are no transactions. The reason why asset pricing models are good to describe prices 
could be due to: the use of these models by investors (a self-fulfilling prophecy); because the prices are effectively 
well characterized by them, or a combination of both. 
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As an example of thinly traded securities, to implement our methodology we use data on 

Chilean governmental bonds traded in the Santiago Stock Exchange to construct a portfolio of 20 

bonds with different maturities. However, our approach can also be applied to other markets 

where infrequent trading exists, especially where pricing models can be estimated by the Kalman 

filter.6 In those markets, risk management measures may be also calculated for portfolios with 

thinly traded assets by using the Kalman filter in a similar way to our approach. 

There are some studies related to ours, but they do not investigate market risk measures in an 

environment of thin trading. Moscadelli et al. (2005) and Chernobai et al. (2006) investigate the 

problem of incomplete data but only from the perspective of operational VaR measures. 

Bartholdy and Riding (1994), Martikainen et al. (1996), Boabang (1996), and Sercu et al. (2008) 

explore the influences of thin trading on asset pricing models. Antonios et al. (2002) and Lim et 

al. (2009) show how infrequent trading could affect market efficiency. Cortazar et al. (2007, 

2012) study the term-structures of interest rates and of corporate bond spreads, in scenarios of 

thin trading.  Finally, Bassett et al. (1991) and Jokivuolle (1995) present econometric tools to 

calculate stock indexes in an environment of incomplete panels of prices.  

Our methodology offers reliable VaR measures for thinly traded markets using out-of-sample 

(one-day ahead) tests. We obtain comparable levels of VaR measures in relation to previous 

studies, which use similar markets to the one used in our implementation but with complete 

panel of prices (e.g., Kiesel et al., 2000; Fernandez, 2003; Bao et al., 2006; and Fernandes et al., 

2008). Moreover, we show that the best VaR methods to describe the market risk in an 

environment with thinly traded assets are those that characterize the left tail of the conditional 

distribution modeling heteroskedastic financial return series (e.g. heteroskedastic extreme value 

methods using the generalized Pareto distribution). These results are also similar to the outcomes 

of earlier studies with complete panels of prices (e.g., Fernandez, 2003; Kuester et al., 2006; and 

Bao et al., 2006), which supports the consistency of our methodology.  

Consequently, we contribute to the body of knowledge exploring market risks in 

environments with portfolios including infrequently traded assets. To the best of our knowledge, 

there is no literature where market risk measures have been investigated in the context of thin 

trading. Therefore, the focus of our paper on the examination of asset risk management on 

portfolios within infrequent trading scenarios appears distinctive. The paper is organized as 

                                                 
6 For instance, there are studies about pricing models that use the standard Kalman filter for stock markets (e.g. 
Brennan et al., 2005; and He et al., 2010); and for option markets (e.g., Bedendo and Hodges, 2009). 
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follows. The data used in the implementation of our methodology is introduced in Section 2. 

Section 3 presents the proposed methodology and describes the implementation on a thinly 

traded portfolio. Section 4 shows robustness checks evidencing the superiority of the proposed 

methodology with respect to alternative strategies used to deal with thin trading environments. 

Lastly, conclusions are drawn in Section 5. 

 

 

2. The Data 

 

We implement our methodology with daily data for the main governmental bonds in the Chilean 

fixed income market. We use semi-annual coupon bonds, called PRCs (“Pagare Reajustable con 

Cupones”) traded between January 4, 1999 and December 30, 2005 (1749 trading days). PRCs 

are inflation-protected bonds issued by the Central Bank of Chile, which are traded at the 

Santiago Stock Exchange.7 A portfolio comprising 20 PRC bonds with different maturities 

ranging from one to twenty years is created to implement our methodology. The portfolio is 

constructed with the assumption that $10,000 is invested in each of the 20 bonds, for a total 

investment of $200,000. The portfolio is re-balanced daily so the $10,000 investment in each 

asset remains constant over time. Table 1 illustrates the missing data problem in this market by 

presenting the trading frequency of PRC bonds in our portfolio during the whole sample period. 

Trading frequency is defined as the number of days in which we have at least one transaction of 

a bond with a specific maturity over all available trading days. A trading frequency of 10% 

means that a security is traded on average 25 days per year. In addition, Table 2 presents a sub-

sample of daily traded bond prices between March 20, 2000 and May 15, 2000, where black 

spaces represent days on which the security was not traded. Table 2 provides a clear illustration 

of the incomplete panel problem. 

[Insert Table 1 here] 

[Insert Table 2 here] 

 

 

                                                 
7 In practice the inflation adjustments are achieved by expressing the coupons in a different unit rather than the 
Chilean peso: the UF (“Unidad de Fomento”), which is updated daily using the previous month’s variation of the 
Chilean consumer price index. 
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3. The Methodology and Implementation on a Thinly Traded Portfolio 

 

Stage I: Generation of a Complete Panel of Prices  

 

Our methodology is based on three stages which allow us to obtain market risk measures of 

portfolios in an environment with infrequently or thinly traded assets. In the first stage, we 

generate a complete historical dataset of prices for the portfolio which are inputs necessary to 

calculate market risks. Therefore, as a first step we estimate an asset pricing model using the 

Kalman filter to characterize prices. However, following Cortazar et al. 2007, we adjust the 

standard Kalman filter technique to deal with an incomplete panel of bond prices, as has also 

been done for other markets like market indices (Basset and Hodges, 2009) or commodities 

(Cortazar et al. 2006, 2008). In our implementation we use the Kalman filter to estimate on a 

daily basis a multifactor dynamic term-structure model of the interest rate using a rolling 

window.  

Traditional estimation approaches for models characterizing the term-structure of the interest 

rates require a minimum number of different observable bond prices at a given time t (i.e. bonds 

with different maturities).8 An example in which the utilization of traditional estimation 

techniques (such as ordinary least squares, OLS; generalized least squares, GLS; among others) 

with thinly traded securities is precluded is when on a given day the number of parameters to be 

estimated for an asset pricing model is larger than the number of the observable prices on the 

market (i.e. we can fit infinite models to the data). For example, the Svensson’s parametric 

model (Svensson, 1994) for characterizing the term-structure of the interest rates needs six 

parameters to be estimated; therefore on days with less than six different traded bonds we cannot 

get an estimation of this model. However, the Kalman filter allows an estimation of the term-

structure of the interest rates even for days with very few price observations; since we use 

historical data where new information is weighted more than older ones.9 Once the term-

structure of the interest rates model is estimated with the incomplete dataset, we use the daily 

                                                 
8 See, e.g., Nelson and Siegel (1987) and Svensson (1994) for parsimonious functional structures, Vasicek (1977), 
Cox et al. (1985), and Duffie and Kan (1996) for dynamics models; and McCulloch (1971) and Vasicek and Fong 
(1982) for spline curve-fitting models. 
9 For a review of dynamic term-structure interest rate models using the standard Kalman filter (without infrequent 
trading) see Babbs and Nowman (1999); Geyer and Pichler (1999); and Chen and Scott (2003). 
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zero curves to compute discount factors and hence prices of bonds in the investment portfolio 

generating a complete panel of fair prices.10 

In the implementation, we use a three-factor generalized Vasicek model to characterize the 

term-structure of the interest rates, which is a mean-reverting Gaussian specification of the 

instantaneous spot interest rate which extends the classic Vasicek’s (1977) dynamic model. We 

select this model for its simplicity as a dynamic representation for the term-structure of the 

interest rates, and for its flexibility given the three factors that allow diverse shape forms. The 

simplicity of this model allows us to explain in a very simple way the Kalman filter technique in 

an environment of infrequent trading.11 It is important to mention that the Vasicek models 

assume a constant volatility of the instantaneous interest rate, which could contradict the main 

purpose of finding risk measures that depend of the volatility of bond prices. However, we 

estimate each day this multifactor dynamic term-structure model; and thus the volatility of the 

interest rate can change over time. A reader can consider this procedure as an attempt of 

replicating typical practices in the market, such as the use of the Black and Scholes’ (1973) 

model that assumes a constant volatility of the underlying asset; nevertheless practitioners obtain 

through this option model daily implied volatilities which change over time, the strike price, and 

the time-to-maturity (see Goncalves and Guidolin, 2006).  

We estimate the model using a six-month daily rolling window. Therefore, we obtain a 

complete data panel of fair prices that starts on July 1999 because the first 6 months of data are 

used in the first estimation. To obtain the fair prices, we calculate interest rates for all maturities 

on each day using the daily estimated model. Therefore, using this estimated yield curve, daily 

fair prices for all bonds in the portfolio are computed through the sum of the present value of the 

coupons (See Appendix A for a mathematical explanation of the model and its estimation).  

 

Stage II: Estimation of Market Risk Measures 

 

In the second stage, we calculate the market risk measures. Risk measures are directly related 

to the volatility of gains and losses, therefore the relevant complete historical dataset is the one 

                                                 
10 For a review of the Kalman filter see Harvey (1982), Davis (1982), and Simon (2006). 
11 In addition, our methodology can be implemented with other dynamic models. For instance, there other simple 
models for the term-structure of the interest rates such as the model introduced by Cox et al. (1985) or other 
specifications. In particular, we did not use the Cox et al. (1985) model because the volatility is multiplied by the 
squarer root of the interest rate that implies that interest rates cannot be negative, which is a problem when using 
‘real’ instead of ‘nominal’ interest rates, as we are.  
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that includes returns (specifically, log-returns). We use a historical panel of returns calculated 

with only fair prices to estimate the market risk measures. The use of data from different sources 

to calculate returns (i.e. a mixed panel with traded prices and fair prices on dates where assets are 

not traded) could imply additional noise in the return values; and therefore a mixed dataset could 

disturb market risk estimations. For instance, we show in Appendix B that fair prices could be 

significantly biased in relation to observable data due to different liquidity premiums among 

securities depending of liquidity levels.12 The reason is that all asset pricing models, even those 

estimated dynamically like the one implemented in our study, on average replicate the behavior 

of prices. Therefore, consistently liquid (illiquid) securities might be underestimated 

(overestimated) due to differences in the liquidity premiums. For that reason, returns calculated 

with a mixed panel of fair and market prices could generate additional disturbances in the 

estimations. However, in Appendix B we also show that there are no biases between returns 

calculated with only fair prices in relation to returns calculated with only market data, since the 

‘levels’ issues are eliminated. The intuition behind unbiased returns is simple. Even though fair 

prices are biased, movements or changes in fair and market prices are going in the same direction 

and following similar paths (i.e. the dynamic model captures the market movements since it is 

estimated daily). Consequently, given that the fair prices were biased but fair returns were not, 

then it is better to make use of returns calculated with only fair prices to estimate the market 

risk.13  

In the implementation of our methodology we use the VaR as the market risk measure. The 

VaR quantifies the risk of a loss in an investment within a time interval and for a given 

confidence level. More precisely, let wt+∆t,t be the variation in value of an investment resulting 

from the price variation in the time interval ∆t, and f(wt+∆t,t) the unknown probability density 

function of such variations. The VaR of an asset (or portfolio of assets), is the amount of money 

that could be lost from negative events which could occur with a probability α. Thus, the VaR 

can be computed as: 
  )|( ,, ttttttt VaRwP F

                                           
(1) 

or, 

                                                 
12 See Chen et al. (2007) for liquidity effects of bond premiums. 
13 In Appendix B, we analyze the prices biases and the returns unbiasness using the complete sample and sub-
samples as robustness checks. 
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where Ft is the information set until day t. For example, if the VaR is calculated at a confidence 

level of 5%, there is a chance of 5% that an actual loss may exceed the value provided by the 

VaR.14 There are three main groups of methods to calculate VaR. First, VaR methods that assume 

a known distribution for the security returns; second, the non-parametric VaR methods; and third, 

Monte Carlo simulations. In the implementation of our methodology, we use at least one method 

from each group as a robustness check.15 We use eight different methods to estimate these risk 

measures (the methods are explained in detail in Appendix C): the VaR method of variance-

covariance; the VaR method of exponential decay (RiskMetrics™); the VaR GARCH method; the 

VaR t-student distribution method; the VaR extreme value theory method (static version); the 

VaR extreme value theory method (dynamic version); the VaR historical simulation method; and 

the VaR Monte Carlo simulation method. 

 

 

Stage III: Back-Testing with an Incomplete Data Set of Market Prices 

 

In the third stage, a back-testing procedure for the market risk measures is required. 

However, a well performed back-test has to be based on the historical observable market data. In 

our implementation, the back-testing procedure for a VaR method lies in computing the 

percentage of times in which daily losses of an investment at time t have been larger than the one 

estimated by VaR values at time t-1. This percentage should not be significantly different from 

the confidence level α under which the VaR measures are calculated. In our study, the back-

testing has two main purposes. First, to observe the reliability of the VaR measures obtained with 

the proposed methodology. The analysis of the reliability of our approach is a key issue since 

with the back-testing we can analyze statistically whether our methodology can capture the 

market risk. Moreover, a reader may interpret the back-testing exercise as a way of testing our 

approach in a real environment of infrequent trading. Secondly, the back-testing allows us to 

                                                 
14 For example, a VaR5%= $-300,000 on an investment is equivalent to saying that a loss of $300,000 (or more) can 
be expected on five days out of one hundred days. 
15 See Duffie and Pan (1997), Manganelli and Engle (2001), and Jorion (2006) for additional details about VaR 
measures. 
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detect the best VaR method for characterizing the market risk for the tested portfolio in an 

environment with thinly traded assets.  

In the back-testing, for example, a perfect VaR method calculated daily with 5% confidence 

level should report that 5% of the time losses exceeded  the values provided by the VaR 

estimations in the previous day. Therefore, a proper back-testing procedure of the VaR implies an 

out-of-sample (one-day ahead) testing process. We use the Kupiec (1995) test that analyzes the 

historic percentage of losses exceeding the VaR. The null hypothesis states that, the proportion of 

losses beyond the VaR is equal to α. Consequently, if the null hypothesis is not rejected, the VaR 

method involved in the back-testing is inside a confidence interval with a confidence level β 

defined in the Kupiec (1995) test. In our implementation, as a first step, we back-test the VaR 

measures using the standard approach introduced in previous literature (e.g., Jorion, 2006; 

Pritsker, 2006; and Kawata and Kijima, 2007); and then we propose an ad-hoc procedure that 

makes use of all the available information. 

As we mentioned previously, a well implemented back-testing has to be done with historical 

prices traded in the market. In the back-testing procedure for daily VaR measures, we need sets 

of two successive days where prices are observed to account for daily gains or losses in the value 

of the security. However, in an environment with thinly traded assets this is unusual. For 

instance, an infrequently traded security with observable price on day t but nothing on day t-1 

implies that in the time series of returns we do not have data for days t and t-1 (i.e. not only at t-

1). Consequently, incomplete panels of historical prices generate more incomplete panels of 

historical returns. This issue is even more complicated in a portfolio with various thinly traded 

assets because it is likely that every day at least one of them does not have a traded price (see, 

e.g., Table 2). Therefore, with incomplete panels of returns and following traditional back-testing 

approaches, we could only test VaR methods for each bond individually in the portfolio using the 

panel of observable daily returns (i.e. returns calculated with observable prices on days t and 

t+1).  

Nevertheless, we propose an ad-hoc back-testing following a simple procedure that makes 

efficient use of all available data. Moreover, the main advantage of our ad-hoc procedure is that 

a back-testing of the complete portfolio can be performed even with a range of thinly traded 

assets. The back-test of the complete portfolio is an essential part for the asset allocation, since it 

is necessary to consider correlations between assets which are a fundamental part of 
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diversification and risk management. This ad-hoc back-testing procedure is explained in the 

following paragraphs, and subsequently we present results applied to our implementation.16 

We assume that an amount M is invested in a single asset on day t, and during the subsequent 

d days the asset is not traded. Therefore, two consecutive prices for the asset are observed at 

times t and t+d+1 (i.e. Pt and Pt+d+1, respectively). The key issue is how to use this multi-day 

price return in order to compare it with an estimate of a daily VaR measure. Let VaRt+d,t+d+1 be 

the one-day VaR measure under a confidence level α for the day t+d+1 given all the information 

observable on the previous day Ft+d; while wt+d,t+d+1 is the variation in value between t+d and 

t+d+1, then: 
    dtdtdtdtdt VaRwP F|1,1,                                         

(3) 

where 

M
P

P
w

dt

dt
dtdt 













 11

1,

                                                

(4) 

We already have the value of VaRt+d,t+d+1 using  the first and second stages of our 

methodology . However, we cannot calculate wt+d,t+d+1 since on day t+d the security does not 

have an observable price; and hence in the back-testing procedure we cannot check if wt+d,t+d+1 is 

lower (or higher) than the VaRt+1,t+d+1. The basic idea of our ad-hoc back-testing procedure is to 

use the previous observable price Pt together with all the new information until t+d (Ft+d) which 

is captured by the asset pricing model estimated in the first stage. Therefore, we calculate 

estimates of Pt+d using the prior trade price Pt given Ft+d as:  

 

t

dt
tdt

t

dt

t
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P
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


F                                      (5) 

where tP̂  and dtP
ˆ  are fair prices.17 Consequently, 

                                                 
16 See Hyung and de Vries (2007) for portfolio diversification effects on VaR measures. 
17 We empirically support this assumption in Appendix B. 
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M

P

P
P

P
w

t

dt
t

dt
dtdt





























 1

ˆ

ˆ
~ 1

1,

                                                  

(6) 

It is interesting to observe that 1,
~

 dtdtw  is calculated with two observable prices (Pt and 

Pt+d+1) jointly with all the information available on the day t+d given by Ft+d. This ad-hoc 

procedure allows us to compare daily VaRt+d,t+d+1 with estimates of the daily gains (or losses) 

1,
~

 dtdtw  which incorporate all the information at each instant.18  

Table 3 presents results of the back-testing for different VaR methods with α=5% in our 

implementation using the portfolio of Chilean bonds for the complete sample. Table 3 Panel A 

shows the results of the back-testing for VaR methods estimated individually for each bond using 

daily returns calculated with the original panel of observable prices (i.e. daily returns are 

calculated with only successive prices that take place at t and t+1). Table 3 Panel B and Panel C 

report the results of the back-testing procedure using our ad-hoc approach for each bond 

individually and for the complete portfolio, respectively. We also include three additional 

measures for back-testing purposes. We calculate the average VaR over the whole time period. 

The average VaR is particularly relevant for regulated institutions which are required to maintain 

capital levels that dependent on their reported VaR measures (e.g. commercial banks). For these 

institutions, a large average VaR implies high costs of capital; in contrast, lower values could 

imply a rejection of the null hypothesis in the Kupiec test and therefore penalties from regulatory 

agencies. Furthermore, we include the average excess over the VaR, which is similar to the 

‘Conditional Value-at-Risk’ (CVaR). The CVaR is the average loss conditional on losses greater 

than the calculated VaR; and thus the CVaR exceeds our measure (the average excess over VaR) 

by an amount equal to the average VaR.19 Additionally, we include the maximum excess over 

VaR to see how catastrophic such event could be relative to VaR estimates. In Appendix D Table 

D.1 and Table D.2, we report the same analysis as Table 3 but using two different sub-samples as 

robustness checks.   

 

[Insert Table 3 here] 

                                                 
18 Of course, in the case of observing prices on two successive trading days (i.e. d = 0), we calculate the  wt,t+1 in the 
traditional way as .]1/[ 11, MPPw ttdtdt    
19 For a review of the CVaR see Rockafellar and Uryasev (2000, 2002). 
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Table 3 Panel A shows that the results observed in that back-testing are similar to those 

presented using our ad-hoc procedure for individual bonds and the complete portfolio in Table 3 

Panel B and Panel C, respectively. However, the ad-hoc procedure makes more efficient use of 

all the information available at each instant. Moreover, the ad-hoc procedure allows the back-

testing of the complete portfolio which is extremely important to evaluate the risk of all assets at 

the same time; and thus taking into account asset correlations. For instance, the average VAR for 

the portfolio (see Table 3 Panel C) is lower than the average VAR for individual bonds multiplied 

by 20 (see Table 3 Panel A and Panel B) due to the effect of correlations. In addition, Table 3 

shows that the best VaR methods for a confidence level of 5% are the GARCH(1,1), the 

RiskMetrics™, and the dynamic Extreme Value Theory (EVT) methods, in which the percentage 

of losses exceeding the VaR are very close to the 5% confidence level required. The variance-

covariance method offers a poor performance in which the null hypothesis of no differences 

between α and the proportion of losses under the VaR is rejected by the Kupiec test. 

Furthermore, Table 3 shows that the lowest average VaR values are provided by the EVT 

methods; and thus they should be attractive for institutions that are concerned about effective but 

low VaR estimations implying lower capital requirements. Table 3 also reports that the average 

excess over the VaR of the dynamic EVT, the Monte Carlo, and GARCH(1,1) methods are 

slightly better than others. The latter methods provide relatively smaller excesses over the VaR 

showing that these have performed well in capturing market dynamics.  

Table 4 repeats the back-testing analysis presented in Table 3 but for VaR estimations at the 

1% confidence level with our complete sample. Table D.3 and Table D.4 in Appendix D shows 

the same analysis as Table 4 but using two different sub-samples to check for robustness. In 

Table 4 and similar to the results observed in Table 3, the back-testing calculated by the standard 

approach (Table 4 Panel A) reports comparable results to our ad-hoc procedure (Table 4 Panel A 

and Panel B). Additionally, we can observe that the only method which is not rejected by the 

Kupiec test is the dynamic EVT. This means that for practically all the VaR methods, the average 

percentage of excesses over the VaR is significantly different from 1%. The poor performance of 

diverse VaR methods, with exception of the dynamic EVT at the 1% level, suggests the 

importance of adequately modeling the left tail of the return distributions. However, the left tail 

is not the unique important feature given that, in such case, the static EVT or the historical 

simulation methods should also offer good results. Therefore, it appears that it is also important 
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to account for the time varying volatility of returns. For instance, Table 4 shows that although the 

GARCH(1,1) method was rejected by the Kupiec test, this method performs relatively better than 

methods such as the static EVT and historical simulation. 

 

[Insert Table 4 here] 

 

It is worth noting that the poor performance of VaR methods at the 1% confidence level has 

already been documented in several studies for both emerging and developed markets, in which 

(as is the case with our study with the dynamic EVT) the exceptions are the methods that take 

into account both the left tail behavior and the heteroskedasticity of the returns. Fernandez 

(2003) finds that the dynamic EVT methods perform best using Chilean market data (but with a 

complete panel of prices). Fernandes et al. (2008) analyze VaR measures for 41 countries, where 

they show the superior performance of EVT methods. In addition, Kiesel et al. (2000) provide an 

analysis for emerging markets using Brady bonds reporting similar measures to those presented 

in our study for VaR measures at 5% and 1% confidence levels. Finally, Bao et al. (2006) 

evaluate VaR models for Asian emerging markets (Korea, Indonesia, Malaysia, Taiwan, and 

Thailand). Their conclusions are also similar to ours for both 5% and 1% confidence levels.20  

In summary, the back-testing procedure suggests that our methodology provides accurate 

measures to capture the market risk, which was performed in a real environment of infrequent 

trading using Chilean governmental bonds. Moreover, although previous studies did not address 

the problem of incomplete panels of prices, their results regarding the alternative VaR methods at 

different confidence levels are similar to those presented in our research supporting the reliability 

of our methodology.  

 

 

4. Robustness Checks 

 

The methodology of repeating the last price 

As mentioned earlier, a common practice in order to calculate VaR measures with infrequent 

trading is to replicate the asset’s last price until a new transaction is observed. Therefore, this 

                                                 
20 Also notice that in environments with thin trading becomes harder to have extreme values and, therefore, tail 
estimates (at the 1% level or lower) might not be reliable by construction.  
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section provides evidence on the reliability of such practice vis-à-vis our proposed methodology. 

Table 5 replicates the statistics (at the 5% confidence level) presented before but using the last 

traded price for each asset until a new transaction is observed.21  

 

[Insert Table 5 here] 

 

Panel A of Table 5 evidences that virtually all methods are rejected by the Kupiec test. This 

contrasts with Table 3 where using our methodology provided reliable VaR measures for all 

methods with the only exception of the variance-covariance one. In addition, average VaRs and 

excesses over the VaR are also larger than the ones produced with the proposed methodology. A 

similar picture emerges from Panels B and C. Therefore, it is apparent that the common practice 

of replicating the last traded prices in order to deal with infrequent trading problems is 

misleading. The evidence presented clearly suggests the superiority of the proposed methodology 

in order to deal with missing data towards calculating VaR measures.22  

 

Changing the rolling window in the estimation of the term-structure model 

So far we have been using a six month rolling window for the estimation of the dynamic 

term-structure model in Stage I. However, we now explore how our methodology performs 

under different lengths of the rolling window. We first apply the methodology with a narrower 

window of three months. Notice that by shortening the window we increase by three months the 

panel of daily fair prices generated via the dynamic model. This provides us with more 

observations for the VaR calculations but at the cost of less precise estimates for the dynamic 

model. 

Table 6 displays the results for a 5% confidence level. The results are consistent with Table 3 

suggesting that the GARCH(1,1), RiskMetrics™, and the dynamic EVT methods perform 

relatively better. In addition, we also find that the variance-covariance method offers the poorest 

performance. However, Panel B also suggests rejection of the static EVT and the Monte Carlo 

method which performed relatively well when using a rolling window of six months (Table 3). 

                                                 
21 Notice that we do not report the results of the VaR method of variance-covariance (Var-Cov Matrix) and the VaR 
Monte Carlo simulation method (Monte Carlo) since in both methods we do not obtain positive-semidefinite matrix 
due to the repetition of prices 
 
22 We also conducted a similar exercise using a 1% confidence level. The results rejected all VaR methods as well.  
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The latter observation might have resulted from the less precise estimates obtained for the term-

structure model within a shorter rolling window for its estimation.  

 

[Insert Table 6 here] 

 

Similarly, the rolling window could be extended. In that case, we would gain precision in 

estimating the dynamic term-structure model but at the cost of having a smaller panel of fair 

prices to calculate the VaR measures. Therefore, we extend the rolling window to 12 months 

with the results shown in Table 7. Overall we observe a similar pattern favoring the 

GARCH(1,1), RiskMetrics™, and the dynamic EVT methods. However, we also observe stronger 

rejections for the rest of methods (Panel B).  

 

[Insert Table 7 here] 

 

Overall, varying the size of the rolling window used to estimate the dynamic term-structure 

model leads to results that are consistent with our baseline analysis. Methods that model both the 

left tail of the distribution and the time-varying volatility like the GARCH(1,1), RiskMetrics™, 

and the dynamic EVT are consistent in returning reliable VaR measures under different formats 

of the rolling window. 

 

A Monte Carlo Analysis for different levels of missing data.  

The proposed methodology has fared well within the Chilean bond market. However, an 

important question is whether the methodology is externally valid. To answer such question 

more research in different trading markets is necessary. But to take an initial step, we simulate a 

bond market generating data through the estimated term-structure model. Specifically, we 

simulate 100 years of daily data with forward vectors of the model’s state variables through its 

stochastic differential equation and using the average of the estimated parameters (see Appendix 

A). In addition, we also vary the rate of missing data (i.e. non-trading days) considering two 

scenarios, 60% and 30% rates of missing data.23  

Tables 8 and 9 show the results for the 60% and 30% missing data rates respectively. Both 

tables are highly consistent suggesting a poor performance of the variance-covariance method 

                                                 
23 Notice that our actual data shows a 61.37% rate of missing data.  
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and a relatively better performance of the GARCH(1,1), RiskMetrics™, and the dynamic EVT 

methods.24 Overall, the results suggest that our methodology offers reliable VaR measures for a 

simulated market and for different rates of infrequent trading. 

 

[Insert Table 8 here] 

[Insert Table 9 here] 

 

 

5. Conclusion 

 

Infrequently or thinly traded securities exist in all markets around the world including both 

emerging and developed markets. However, there is a lack of literature that explores market risk 

measures in portfolios with thinly traded assets. We proposed a methodology based on three 

stages to calculate market risks using incomplete historical panels of prices. First, we fit an asset 

pricing model estimated by the Kalman filter using the incomplete dataset to characterize all 

assets in a given portfolio and thus to obtain a complete panel data. Second, we estimate market 

risk measures with the new complete panel of prices. Third, we back-test the market risk 

measures with the observable incomplete historical panel of prices to check the reliability of our 

methodology. As an example of thinly traded securities, we implemented our methodology using 

Chilean governmental bonds traded at the Santiago Stock Exchange. Nevertheless, our approach 

can be applied to other markets where infrequent trading is present.  

Our methodology to calculate market risks in an environment of thin trading is intuitive and 

flexible. We provide empirical evidence supporting that our approach provides reliable VaR 

measures for infrequently traded securities. Our approach outperformed the common practice of 

replicating the last traded price in order to calculate VaR measures. In addition, we showed that 

our methodology was robust when varying the rolling window used to estimate the term-

structure model and when applied to simulated markets with different rates of non-trading days. 

Nevertheless, there are other important and interesting issues that we would like to investigate in 

the future. For example, the estimation of a complete portfolio management strategy with thinly 

                                                 
24 Notice that the Monte Carlo VaR calculation cannot be directly compared with the one obtained in Table 3 using 
the historical data. This because in this exercise the artificial data is being generated with the same dynamic model 
than the one used to calculate the VaR measure with the Monte Carlo methodology. 
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traded assets including market risk measures together with asset allocation methods are beyond 

the scope of this paper. In addition, possible studies including other measures of market risk, 

implementations in other markets, and the use of diverse securities are left for future research. 

Finally, we hope that our study encourages further research in thinly traded assets across 

different areas of portfolio management. 

 

 

Appendix A: The Dynamic Term-Structure Model and its Estimation 

 

In the three-factor generalized Vasicek model, three stochastic unobservable mean-reverting 

state variables are defined and represented by the 3x1 vector yt. Then, the instantaneous interest 

rate, qt, may be defined as: 

                                         ttq y1'             (A-1) 

where δ is a constant. In addition, the vector of state variables follows a multifactor Vasicek-type 

process governed by the stochastic differential equation:                                                

ttt ddtd wΣKyy                (A-2) 

in which K=diag(κi) and Σ=diag(σi)
 are 3x3 diagonal matrices with i representing the respective 

state variables; and dwt is a 3x1 vector of correlated Brownian motion processes such that: 

 
   dtdd tt Ωww '                                                             (A-3) 

Here, ρi,j is one of the elements of Ω which represents the instantaneous correlation between the 

state variables i and j. Under this specification, the state variables have a multivariate normal 

distribution, and each of them reverts to zero with a mean reversion rate given by κi. Thus, from 

equation (A-1) the instantaneous interest rate, qt, reverts to a long-run mean given by the 

constant δ. By assuming a constant 3x1 vector of risk premiums, λ, the risk adjusted process of 

the state variables can be expressed as: 
  ttt ddtd wΣKyλy                 (A-4) 

Additionally, through standard no-arbitrage arguments we can obtain the price of any pure-

discount bond with maturity τ as:   
   )()'(exp,  vP tt  yuy      (A-5) 
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where 

(A-6) 

and 

 

(A-7) 

 

In addition, the equivalent annualized spot rate, Q(yt,τ), is: 

 )()'(
1

),( 


 vQ tt  yuy
    (A-8)

 

which is a linear function of the state variables. Therefore, under the generalized Vasicek model 

spot rates also follow a Gaussian distribution. Afterwards, we estimate this model by the Kalman 

filter, in which the unobservable state variables contained in vector yt are calculated recursively 

using all the information available until time t. In the state-space representation, the 

measurement equation that relates the vector of observable variables bt with the vector of 

unobservable state variables yt, is: 

 
)(~ ttttttt 0,N ΓvvdyHb                (A-9) 

We must recall that the standard Kalman filter assumes a fixed number of observable 

variables at each time. However, this assumption can be relaxed in order to allow for missing 

observations. Let mt be the number of observations available at time t, then bt is an mtx1 vector, 

Ht is an mtx3 matrix, dt is an mtx1 vector, and vt is an mtx1 vector of serially uncorrelated 

Gaussian disturbances with mean zero and covariance matrix Γt with dimensions mtxmt. The 

transition equation, which describes the dynamics of the state variables, may be written as: 

 
),0(~1 ttttttt N DεεcyAy                       (A-10) 
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where At is a 3x3 matrix, ct is a 3x1 vector, and εt is a 3x1 vector of uncorrelated Gaussian noise 

with mean zero and covariance matrix Dt.
25 In the iterative estimation process of the Kalman 

filter, estimates of the state variables, tŷ , are obtained recursively where Jt is the covariance 

matrix of the estimation errors:    

  'ˆˆ ttttt E yyyyJ       (A-11) 

Consequently, in the iterative process given all the information at t-1, estimates of the state 

variables and the covariance matrix of the estimation errors at t can be written as:  

ttttt cyAy   11| ˆˆ            (A-12) 

tttttt DAJAJ  
'

11|                                                           (A-13) 

Equations (A-12) and (A-13) are known as the prediction steps. In addition when new 

information arrives at t through the observable variables (bt), we can obtain unconditional 

estimates of the state variables and the covariance matrix of the estimation errors as follows: 

 

 tttttttttttt dyHbFHJyy  


 1|
1'

1|1| ˆˆˆ                                      (A-14) 

1|
1'

1|1| 


  tttttttttt JHFHJJJ                                              (A-15) 

where 

tttttt ΓHJHF  
'

1|                                                      (A-16) 

As a final step, the unknown model parameters represented by the vector φ can be estimated 

by maximizing the log-likelihood function of the error innovations given by: 

 

     



t

ttttttttttt
t

tL dyHbFdyHbFφ 1|
1'

1| ˆˆ
2

1
log

2

1
)(log             (A-17) 

                                                 
25 It is important to mention that the Kalman filter needs that at least one security is traded; this issue is not a big 
constraint since the inexistence of at least one transaction is very unlikely (e.g. in our sample we have all days with 
at least one transaction in the portfolio of 20 bonds). However, in the improbable case of a day with zero 
transactions it is possible to use the middle points of the bid-ask spreads of the most liquid securities as the prices in 
the model.  
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We estimate the model using a six-month daily rolling window. Therefore, we obtain a 

complete data panel from July 1999 because the first 6 months are necessary for the first 

estimation. Table A.1 presents the averages of the mean value, the standard deviation, and the 

mean of standard errors of parameter estimates for the three-factor generalized Vasicek term-

structure dynamic model defined previously. The table shows average statistics of the daily mean 

reversion parameters (κ1, κ2, κ3); the volatility parameters (σ1, σ2, σ3); the correlation 

coefficients of the state variables (ρ1,2, ρ1,3, ρ2,3); the long-run mean of interest rates δ; the 

market prices of risk (λ1, λ2, λ3); and the state variables contained in yt. Even though, Vasicek’s 

(1977) dynamic model assumes a constant volatility of the spot interest rate and thus the 

volatility parameters should be constant; the volatility parameters change over time which is 

reflected in their standard deviations. The parameters of the model are not constant due to the 

fact that we estimate each day this multifactor dynamic term-structure model (and hence the spot 

volatility of the interest rate can also change over time), which gives flexibility to our model to 

capture market movements that are fundamental for risk management. In addition, it is important 

to observe that on average the κ1 parameter estimate is nearly zero; this indicates that the first 

factor is nearly a random walk and it explains why our estimate of 1  is close to zero.26 

 

[Insert Table A.1 here] 

 

 

Appendix B: Analysis of Prices and Returns between Fair and Market Data 

 

In this Appendix we present relationships between fair and market prices and between fair 

and market returns. These analyses are useful to understand how we should generate complete 

data panels of historical prices. For instance, in the case that fair prices and fair returns are very 

close to market data, then both panels could be merged where fair prices are used when market 

transactions are not available; and thus later to obtain a complete dataset of asset returns. 

However, in the case that fair prices are biased in relation to the prices observed in the market, 

but fair returns are not (as we will show in this Appendix), then it is better to make use of only 

fair prices to calculate the returns instead of a mixed dataset. 

                                                 
26 Notice that we could have imposed a random walk factor. However, we allowed flexibility to the model as other 
trading environments might not have shown the behavior found in our empirical application. 
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Table B.1 Panel A provides summary statistics of measurement errors between fair and 

market prices for the complete sample of 20 bonds. In addition, Table B.1 Panel B reports 

summary statistics for errors between fair and market returns calculated with only successive 

prices (i.e. o t and t+1). In Table B.1, we report the mean of errors, the standard deviation of 

errors, t-statistics, the mean of the absolute value of errors (MAE), and the root mean of the 

squared errors (RMSE). Table B.1 Panel A show biases between fair and market prices; in which 

practically all bonds have the mean of the errors between fair and market prices significantly 

different from zero. The reason is that the dynamic term-structure of the interest rates model on 

average replicates the behavior of option prices. However, fair prices for liquid bonds (see Table 

1), such as bonds with maturities of 07; 08; 19 and 20 years, are consistently underestimated by 

the model. By contrast, illiquid bonds are overestimated. Therefore, biases are due to the 

differences of liquidity premiums among bonds. Nevertheless, Table B.1 Panel B shows that fair 

returns are not statistically different from the observed market returns. Table B.1 Panel B 

suggests that, even though fair prices are biased, the movements or changes of the complete 

market term-structure of the interest rates are well represented by the movements of the fair 

term-structure of the interest rates estimated through the three-factor dynamic term-structure 

model. This is mainly due to the fact that we estimate on a daily basis the multifactor term-

structure model of the interest rates, which allow us to capture the movements of the interest 

rates over time. Thus, the evidence suggests that: 
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where tP̂  and 1
ˆ
tP  are fair prices. We repeat the same analysis reported in Table A.1 but using two 

sub-samples in Table B.2 and Table B.3. Table B.2 and Table B.3 shows the consistency of the 

results of Table B.1. Consequently, in our implementation we assume that fair returns replicate 

very closely market returns. This assumption is very important, given that it is a necessary 

condition to obtain reliable VaR measures and is also useful for the ad-hoc back-testing 

procedure.  

 

[Insert Table B.1 here] 

[Insert Table B.2 here] 
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[Insert Table B.3 here] 

 

 

 

Appendix C: Value at Risk Measures 

 

Parametric Methods Using Multivariate Normal Distributions 

 

The VaR method of variance-covariance 

 

The method of variance-covariance assumes a multivariate normal distribution of the log 

returns, in which the variance-covariance matrix is calculated with the historical returns. In the 

case of a single asset, the VaR with an α confidence level is: 

MeVaR
u

tt 




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



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

 1
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2
(

1,

2




                                                    (C-1) 

where u and σ2 are the mean and variance of log-returns, ψ is the inverse of a N(0,1) with 

probability α, and M is the amount invested. In addition, equation (C-1) is also used for the VaR 

of the portfolio, but the portfolio variance is obtained using the variance-covariance matrix (i.e. 

σ2=ω’Θω, where ω is the vector of weights for the different assets of the portfolio, and Θ is the 

variance-covariance matrix). In our implementation we use a rolling window of 252 days for the 

estimations. 

 

 

The VaR method of exponential decay (using the RiskMetrics™ version) 

 

This method, which was popularized by J.P. Morgan in the nineties, is characterized by its 

simplicity (see Longerstaey and Spencer, 1996), where the elements in the variance-covariance 

matrix are calculated using:  

  1,1,
2

1,,
2

,, 1   tjtiRMtjiRMtji rr                                        (C-2) 
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here ri,t is the log return for the asset i on dat t; σi,j,t the covariance between the assets i and j; and 

λRM = 0.94. Therefore, the VaR can be calculated using equation (C-1) for a single asset but the 

return volatility is estimated by equation (C-2). For a portfolio, the VaR is also calculated using 

equation (C-1) with a variance covariance matrix equal to σ2 = ω’Θω, where the elements of Θ 

are obtained by equation (C-2). We also use a rolling window of 252 days for the estimations 

with this method. 
 

 

The VaR GARCH(1,1) method 

 

Following Bollerslev (1986), we use: 

ttti zur  ,                                                          (C-3) 

ttt z                                                              (C-4) 

2
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110

2
  ttt                                                 (C-5) 

where zt are iid innovations with zero mean and unit variance. Once we have estimated the 

GARCH(1,1) model, we obtain estimates for σt and the VaR for a single asset is calculated using 

equation (C-1). The VaR for the complete portfolio is calculated using the GARCH(1,1) model 

for the daily portfolio returns: 


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
c

i
tiitportf rr

1
,,                                                        (C-6) 

Afterwards, we also use equation (C-1) with the estimate of the portfolio volatility to obtain 

the VaR of the portfolio. This procedure is used instead of a multivariate GARCH model where 

many parameters should be estimated. The assumption that the portfolio can be taken as a single 

asset is due to the fact that many assets in the economy are themselves portfolios. Moreover, in 

our implementation each bond is a portfolio composed by different cash flows or coupons (zero 

coupon bonds). As with the previous VaR methods we use a rolling window of 252 days for the 

estimations. 
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Parametric Methods Taking into Account Asymmetries and Kurtosis of Returns 

 

The VaR t-student distribution method 

 

We used a t-student distribution for the security returns to calculate the VaR following the 

work of Wilson (1993) and Lucas (2000). The t-student distribution has the advantage of better 

adjustments to tails than normal distributions. After estimating the parameters of the t-student 

distribution we can use it to estimate the VaR. The VaR for the portfolio is calculated estimating 

the parameters for a t-student distribution using the daily returns of the complete portfolio 

calculated with equation (C-6). As previous methods, we again use a rolling window of 252 days 

for the estimations. 

 

 

The VaR extreme value theory method (static version) 

 

The VaR methods that incorporate the extreme value theory (EVT) try to characterize just the 

left tail of the return distribution (see, e.g., Embrechts et al., 1997). The idea is to fit returns, 

which are under a threshold μ, to a transformation of the Generalized Pareto Distribution (GPD):  
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where ξ and β are the parameters of the GPD. Following McNeil and Frey (2000), we use μ 

values in which the number of points under the threshold represents the 10% of the data in the 

left tail. In addition, as Embrechts et al. (1997), Coles (2001), and McNeil and Frey (2000) we 

can calculate the VaR of a single asset as:  
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where kμ is the number of observations in excess of the threshold μ; and n is the sample size used 

for the GPD estimation. The VaR of a portfolio is calculated using the portfolio returns by 

equation (C-6) and then by equation (C-8). We use a rolling window of 400 days which is larger 

than rolling window used in previous methods since the GPD is estimated only with returns 

under the threshold μ, therefore we need enough data to have large investment losses in the left 

tail of the distribution. 

 

 

The VaR extreme value theory method (dynamic version) 

 

The static version of the EVT method (like other methods such as the VaR variance-

covariance and t-student distribution methods) allocates the same weight to recent and past data, 

and thus it does not consider volatility heteroskedasticity. In this context, McNeil and Frey 

(2000) develope a dynamic EVT method for VaR calculations with the purpose of taking into 

account quick market changes of returns. Following McNeil and Frey (2000) the dynamic EVT 

method for the VaR is estimated in a three-step procedure. First, we estimate the return 

volatilities using a GARCH(1,1) model by maximum likelihood assuming normal distribution of 

the error term. Second, we take the residuals zt in the GARCH(1,1) model using the estimated 

parameters from the preceding step, and we fit a GPD to those residuals represented by G(zt). 

The method proposed by McNeil and Frey (2000) assumes that in a GARCH(1,1) model, 

although the residuals are not distributed following a normal distribution, maximum likelihood 

assuming normal distribution of the residuals can be used to obtain consistent estimates (see 

Wooldridge, 1991; and Ruiz, 1994).  Third, we estimate the value of the inverse of the GPD 

distribution of residuals, INV(G(zt),α), for the VaR with an α confidence level. Then INV(G(zt),α) 

replaces ψ in equation (C-1) , and σ is obtained from the GARCH(1,1) model:  
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For the VaR of the complete portfolio, we repeat the same three steps calculating the 

portfolio returns as a single asset using equation (C-6). We also use a rolling window of 400 days 

for the estimations. 
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Non-Parametric Methods 

 

The VaR historical simulation method 

 

The most popular non-parametric approach is the historical simulation method, which is 

based on the histogram of the historical returns where the percentile α multiplied by the amount 

invested reflects the VaR with an α confidence level. In the same way as previous methods, the 

VaR of portfolio is estimated with the returns calculated as a single asset using equation (B-6). A 

rolling window of 252 days is taken for VaR estimations with this method. 

 

 

 

Monte Carlo Simulation Methods 

 

The VaR Monte Carlo simulation method using a dynamic stochastic process for term-structure 

of the interest rates  

 

Following Beder (1995), Longerstaey and Spencer (1996), and Singh (1997), the first step in 

a Monte Carlo method for estimating the VaR is to specify a stochastic process that describes the 

financial variables of the assets in the portfolio. In our implementation, we take advantage of the 

process which is followed by the term-structure of the interest rates characterized in the first 

stage of our methodology (i.e. a dynamic three-factor model). Then, with the parameters 

estimated we simulate prices using the stochastic process assumed (i.e. we simulate multiple 

forward vectors of state variables yt using equation (A-4)). With these simulations, we can 

generate a set of returns and therefore a set of investment outcomes, thus we obtain the VaR 

measure taking the percentile α of those values multiplied by the amount invested.  

Finally and in relation to all methods, since some VaR methods used in our implementation 

require 400 historical days to be performed, we obtain VaR measures for all of them from 

January 2001 onwards (i.e. in our sample from January 1999 six months are required in Stage I 

to obtain the initial values of the fair prices, plus one year and a half of a complete panel of 

returns are also required to calculate the VaR measures). 
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Appendix D: Back-Testing Using Different Subsamples 

 

In this appendix, we report results of the back-testing for different VaR methods with α=5% 

(α=1%) in our implementation using the portfolio of Chilean bonds for two subsample in Table 

D.1 and Table D.2 (Table D.3 and Table D.4). We can observe in Table D.1 ad Table D.2 (Table 

D.3 and Table D.4) that results of the back-testing procedure are stables over time; and thus 

confirming the consistency of the results showed for the complete sample in Table 3 (Table 4). 

 

[Insert Table D.1 here] 

[Insert Table D.2 here] 

[Insert Table D.3 here] 

[Insert Table D.4 here] 
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Table 1. Summary Statistics for PRC Bonds in the Santiago Stock Exchange 

Bond Maturities 
in Years

Number of 
Observations

Average Trading 
Frequency

Yield 
(mean)

Yield 
(Stand. Dev.)

1 329 18.79% 5.49% 1.92%
2 553 31.64% 5.28% 1.86%
3 566 32.37% 5.36% 1.37%
4 876 50.10% 4.57% 1.59%
5 674 38.56% 5.80% 1.39%
6 751 42.91% 5.80% 1.25%
7 1139 65.13% 5.00% 1.31%
8 1408 80.49% 4.80% 1.17%
9 620 35.46% 4.84% 1.04%
10 715 40.87% 5.34% 0.84%
11 387 22.15% 5.34% 1.03%
12 603 34.48% 5.55% 0.91%
13 384 21.95% 5.29% 0.95%
14 680 38.89% 4.71% 0.80%
15 446 25.51% 4.95% 0.96%
16 483 27.62% 4.84% 0.82%
17 398 22.74% 4.71% 0.75%
18 487 27.82% 5.18% 0.96%
19 794 45.42% 5.11% 0.98%
20 940 53.72% 4.98% 0.98%  

Notes: The sample period is January 4, 1999 to December 30, 2005. Trading frequency is defined as the number of 
days for which there is at least one transaction of a given bond over all available trading days. The yields are 
continuously compounded. 
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Table 2. Sub-Sample of Daily Traded Bond Prices in the Santiago Stock Exchange 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Dates

20-03-2000 99.82 99.65 99.26 98.85
21-03-2000 100.22 100.13 99.98 99.64 99.48 99.24 99.14 98.79
22-03-2000 100.18 99.95 99.82 99.45 99.19 98.98 99.00 98.96
23-03-2000 100.29 99.90 99.70 99.24 99.10
24-03-2000 100.19 99.97 99.67 99.65 99.63
27-03-2000 100.26 99.90 99.93 99.97 99.65 99.41
28-03-2000 99.81 99.56
29-03-2000 100.35 100.30 100.23 100.05 99.80 99.84 99.77 99.76
30-03-2000 100.42 100.58 100.39 100.13 100.16 100.06 100.02 100.13 99.96 99.87
31-03-2000 100.43 100.45 100.23 100.19 99.96 99.81
03-04-2000 100.36 100.21 100.20 100.22 100.19 100.06 99.96 99.78 99.81 99.80 99.87
04-04-2000 100.16 100.37 100.50 100.55 100.50 100.20 100.10 100.17 99.96 99.96 99.96
05-04-2000 100.39 100.18 100.12 100.06 99.84 99.83 99.95
06-04-2000 100.31 100.26 100.48 100.31 100.06 99.96 99.83 99.76 99.88
07-04-2000 100.28 100.44 100.36 100.46 100.48 100.05 100.09 99.78 99.71 99.63 99.61 99.59 99.58
10-04-2000 100.25 100.27 100.23 100.09 100.18 100.09 99.83
11-04-2000 100.33 100.06 99.96 99.59 99.79
12-04-2000 100.21 100.16 100.43 100.21 100.09 99.97 100.24 99.97
13-04-2000 100.33 100.55 100.28 100.20 100.06 100.07 99.68
14-04-2000 100.27 99.91
17-04-2000 100.37 99.97 99.54
18-04-2000 100.49 100.11 99.88 99.76 99.61 99.50 99.34 99.45 99.21 99.64
19-04-2000 100.60 100.34 100.31 100.09 99.48 99.45
20-04-2000 100.62 100.42 99.93 99.88
24-04-2000 100.04 99.79 99.49 99.43 99.41
25-04-2000 99.69 99.70 99.52 99.37 99.18
26-04-2000 100.25 99.66 99.55 99.37 99.25
27-04-2000 100.34 99.83 99.60
28-04-2000 100.25 100.69 100.52 100.41 100.58 100.38 99.83 99.61 99.55
02-05-2000 99.53 99.20 99.31
03-05-2000 100.28 100.24 100.01 99.64 99.18
04-05-2000 100.14 100.28 99.99 99.72 99.57
05-05-2000 100.63 100.58 100.41 99.68 99.57 99.52 99.24
08-05-2000 99.42 99.26 98.64
09-05-2000 100.19 99.17 98.85 98.66 98.67
10-05-2000 100.31 99.21 98.95 98.83 98.60 98.47 98.41
11-05-2000 100.29 100.69 99.87 99.24 99.04 98.60
12-05-2000 100.20 99.50 99.17 98.73
15-05-2000 98.79

Bond Maturities in Years

Bond Prices

 
Notes: Sub-sample from March 20, 2000 to May 15, 2000. Bond prices have been standardized to a face value of 
$100. Black spaces represent days on which the bonds were not traded. 
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Table 3. Back-Testing Summary Statistics for the VaR Methods with α=5% against the Bond Market Data from the 
Santiago Stock Exchange between January 2001 and December 2005   

Var-Cov Matrix RiskMetricsTM GARCH(1,1) t - Student Hist. Sim. Static EVT Dynamic EVT Monte Carlo

% Excess over VaR 7.31% 5.62% 4.76% 6.35% 6.17% 6.05% 5.81% 5.95%
Kupiec Statistic 9.90** 0.78 0.12 3.55 2.68 2.17 1.33 1.79
Average VaR -44.29 -41.75 -43.72 -52.67 -40.61 -33.26 -37.64 -45.61

Average Excess over VaR -25.59 -23.10 -23.58 -23.51 -26.91 -30.57 -20.17 -19.89
Maximum Excess over VaR -183.70 -137.43 -104.13 -205.43 -189.53 -223.06 -107.83 -106.76

% Excess over VaR 7.97% 5.78% 4.93% 6.66% 6.61% 6.40% 6.19% 6.28%
Kupiec Statistic 15.87** 1.22 0.01 5.29* 4.98* 3.78 2.78 3.2
Average VaR -47.74 -47.41 -48.98 -57.97 -49.97 -41.52 -46.56 -47.66

Average Excess over VaR -35.76 -28.51 -30.63 -35.86 -35.78 -37.70 -27.31 -30.24
Maximum Excess over VaR -189.40 -154.17 -111.63 -213.10 -221.56 -233.20 -128.88 -113.69

% Excess over VaR 7.03% 5.12% 4.54% 6.06% 5.70% 6.01% 5.58% 5.71%
Kupiec Statistic 7.77** 0.03 0.47 2.22 0.99 2.00 0.69 1.02
Average VaR -641.62 -603.62 -596.88 -675.47 -524.39 -463.04 -520.40 -549.75

Average Excess over VaR -429.03 -300.14 -274.31 -428.50 -393.96 -428.15 -272.46 -282.13
Maximum Excess over VaR -2868.00 -1956.80 -1976.30 -2869.10 -2851.00 -3114.60 -2051.40 -1985.37

Panel B: Back-Testing of Individual Bonds with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

Value-at-Risk Methods (α=5%)

Panel A: Back-Testing of Individual Bonds with the Traditional Approach
(Sub-Sample where the Daily Gains and Losses are Calculated with Only Successive Prices at t  and t +1)

Panel C: Back-Testing of the Portfolio with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

 
Notes: Panel A presents the results of the back-testing for VaR methods estimated individually for each bond in the portfolio, in which the back-test is performed 
using daily returns that are calculated with only successive prices that take place at t and t+1. Panel B and Panel C report the results of our ad-hoc back-testing 
procedure using equation (6) for VaR methods estimated for each bond individually in the portfolio and for the complete portfolio, respectively. We obtain VaR 
measures for all methods from January 2001 until December 2005 (i.e. in our sample from January 1999 six months are required in Stage I to obtain the initial 
values of the fair prices, plus one year and a half of a complete panel of returns are required to calculate the VaR measures). We present the VaR method of 
variance-covariance (Var-Cov Matrix), VaR method of exponential decay (RiskMetrics™), VaR GARCH method (GARCH(1,1)), VaR t-student distribution 
method (t-Student), VaR extreme value theory method static version (Static EVT), VaR extreme value theory method dynamic version (Dynamic EVT), VaR 
historical simulation method (Hist. Sim.); and VaR Monte Carlo simulation method (Monte Carlo) which are explained in detail in Appendix B.  ** and * denote 
significance at the 1% and 5% levels respectively in the Kupiec test.  
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Table 4. Back-Testing Summary Statistics for the VaR Methods with α=1% against the Bond Market Data from the 
Santiago Stock Exchange between January 2001 and December 2005   

Var-Cov Matrix RiskMetricsTM GARCH(1,1) t - Student Hist. Sim. Static EVT Dynamic EVT Monte Carlo

% Excess over VaR 3.12% 2.10% 1.75% 2.89% 2.63% 2.25% 1.29% 2.33%
Kupiec Statistic 28.94** 9.25** 4.79* 23.88** 18.46** 11.62** 0.77 12.95**
Average VaR -78.45 -64.45 -56.66 -73.12 -72.31 -80.69 -45.98 -71.01

Average Excess over VaR -28.12 -13.35 -21.72 -28.55 -27.05 -26.36 -18.59 -21.67
Maximum Excess over VaR -157.10 -90.84 -95.40 -167.46 -135.14 -164.06 -63.57 -88.24

% Excess over VaR 3.30% 2.12% 2.08% 3.12% 2.72% 2.32% 1.33% 2.45%
Kupiec Statistic 33.32** 9.52** 8.94** 29.10** 20.31** 12.76** 0.97 15.19**
Average VaR -86.43 -74.38 -67.68 -83.39 -85.01 -81.95 -49.15 -83.90

Average Excess over VaR -30.94 -13.83 -25.27 -31.20 -28.65 -27.29 -20.87 -23.42
Maximum Excess over VaR -184.44 -99.73 -112.89 -177.99 -144.07 -189.96 -66.13 -97.81

% Excess over VaR 2.88% 1.77% 1.70% 2.54% 2.40% 2.12% 1.19% 1.93%
Kupiec Statistic 23.74** 4.88* 4.08* 16.83** 14.16** 9.51** 0.34 6.90**
Average VaR -916.83 -843.74 -848.56 -996.45 -1307.03 -1242.01 -826.83 -1049.49

Average Excess over VaR -462.72 -291.51 -300.00 -461.36 -445.26 -461.75 -268.14 -299.33
Maximum Excess over VaR -2552.00 -1278.40 -1460.20 -2552.70 -1838.10 -1886.90 -1146.00 -1464.04

Value-at-Risk Methods (α=1%)

Panel A: Back-Testing of Individual Bonds with the Traditional Approach
(Sub-Sample where the Daily Gains and Losses are Calculated with Only Successive Prices at t  and t +1)

Panel B: Back-Testing of Individual Bonds with Ad-Hoc Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

Panel C: Back-Testing of the Portfolio with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

 
Notes: Panel A presents the results of the back-testing for VaR methods estimated individually for each bond in the portfolio, in which the back-test is performed 
using daily returns that are calculated with only successive prices that take place at t and t+1. Panel B and Panel C report the results of our ad-hoc back-testing 
procedure using equation (6) for VaR methods estimated for each bond individually in the portfolio and for the complete portfolio, respectively. We obtain VaR 
measures for all methods from January 2001 until December 2005 (i.e. in our sample from January 1999 six months are required in Stage I to obtain the initial 
values of the fair prices, plus one year and a half of a complete panel of returns are required to calculate the VaR measures). We present the VaR method of 
variance-covariance (Var-Cov Matrix), VaR method of exponential decay (RiskMetrics™), VaR GARCH method (GARCH(1,1)), VaR t-student distribution 
method (t-Student), VaR extreme value theory method static version (Static EVT), VaR extreme value theory method dynamic version (Dynamic EVT), VaR 
historical simulation method (Hist. Sim.); and VaR Monte Carlo simulation method (Monte Carlo) which are explained in detail in Appendix B.  ** and * denote 
significance at the 1% and 5% levels respectively in the Kupiec test.  
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Table 5. Back-Testing Summary Statistics for the VaR Methods with α=5% Under the Simple Assumption of Repeating the 
Last Price to Generate a Complete Panel of Prices 

Var-Cov Matrix RiskMetricsTM GARCH(1,1) t - Student Hist. Sim. Static EVT Dynamic EVT Monte Carlo

% Excess over VaR N/A 7.73% 6.69% 7.99% 7.84% 7.43% 6.46% N/A
Kupiec Statistic N/A 13.54** 5.46* 16.07** 14.56** 10.91** 4.12* N/A
Average VaR N/A -53.95 -64.98 -53.33 -53.77 -41.37 -48.31 N/A

Average Excess over VaR N/A -32.40 -30.94 -33.24 -32.60 -40.21 -29.98 N/A
Maximum Excess over VaR N/A -180.52 -123.63 -284.28 -231.49 -274.54 -142.07 N/A

% Excess over VaR N/A 8.26% 7.14% 8.21% 7.96% 7.82% 6.76% N/A
Kupiec Statistic N/A 18.88** 8.59** 18.31** 15.80** 14.43** 5.91* N/A
Average VaR N/A -58.18 -57.84 -75.40 -68.16 -54.45 -49.74 N/A

Average Excess over VaR N/A -34.19 -32.80 -38.69 -36.61 -40.19 -31.54 N/A
Maximum Excess over VaR N/A -158.52 -155.12 -302.95 -271.64 -292.88 -175.73 N/A

% Excess over VaR N/A 7.16% 6.46% 7.59% 7.75% 6.94% 6.21% N/A
Kupiec Statistic N/A 8.69** 4.12* 12.25** 13.72** 7.09** 2.88 N/A
Average VaR N/A -891.79 -609.83 -988.73 -704.25 -647.42 -549.03 N/A

Average Excess over VaR N/A -351.16 -340.69 -636.91 -590.83 -557.76 -374.50 N/A
Maximum Excess over VaR N/A -2326.50 -2005.33 -3841.25 -3902.48 -3646.36 -2349.65 N/A

Value-at-Risk Methods (α=5%)

Panel A: Back-Testing of Individual Bonds with Traditional Approach
(Sub-Sample where the Daily Gains and Losses are Calculated with Only Successive Prices at t  and t +1)

Panel B: Back-Testing of Individual Bonds with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

Panel C: Back-Testing of the Portfolio with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

 
Notes: The table reports a similar matched sample analysis as in Table 3, but in this case we do not use a dynamic model to generate a complete panel of prices 
(without Stage I from our methodology); instead, in this table we repeat the last price when there is not a transaction price in our dataset. Panel A presents the 
results of the back-testing for VaR methods estimated individually for each bond in the portfolio, in which the back-test is performed using daily returns that are 
calculated with only successive prices that take place at t and t+1. Panel B and Panel C report the results of our ad-hoc back-testing procedure using equation (6) 
for VaR methods estimated for each bond individually in the portfolio and for the complete portfolio, respectively. We obtain VaR measures for all methods 
from January 2001 until December 2005. We present the VaR method of exponential decay (RiskMetrics™), VaR GARCH method (GARCH(1,1)), VaR t-
student distribution method (t-Student), VaR extreme value theory method static version (Static EVT), VaR extreme value theory method dynamic version 
(Dynamic EVT), the VaR historical simulation method (Hist. Sim.), which are explained in detail in Appendix B. We do not report the results of the VaR method 
of variance-covariance (Var-Cov Matrix) and the VaR Monte Carlo simulation method (Monte Carlo) since in both methods we do not obtain a positive-
semidefinite matrix due to the repetition of prices.  ** and * denote significance at the 1% and 5% levels respectively in the Kupiec test.  
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Table 6. Back-Testing Summary Statistics for the VaR Methods with α=5% Using a Rolling Window of Three months 

Var-Cov Matrix RiskMetricsTM GARCH(1,1) t - Student Hist. Sim. Static EVT Dynamic EVT Monte Carlo

% Excess over VaR 7.83% 5.71% 5.49% 6.69% 6.26% 6.28% 5.93% 6.51%
Kupiec Statistic 14.49** 1.03 0.49 5.48* 3.11 3.19 1.74 4.38*
Average VaR -51.82 -45.63 -44.08 -56.42 -45.52 -35.74 -40.26 -52.21

Average Excess over VaR -27.16 -25.10 -24.44 -26.50 -30.52 -33.58 -22.82 -23.79
Maximum Excess over VaR -210.38 -144.92 -123.77 -214.10 -207.31 -225.46 -115.53 -120.71

% Excess over VaR 8.86% 5.89% 5.75% 6.88% 6.85% 7.37% 5.98% 7.28%
Kupiec Statistic 25.74** 1.58 1.14 6.67** 6.49* 10.40** 1.91 9.66**
Average VaR -55.51 -53.94 -56.98 -66.48 -51.72 -45.22 -47.22 -53.46

Average Excess over VaR -37.47 -29.70 -28.77 -37.59 -42.01 -42.05 -28.27 -34.64
Maximum Excess over VaR -211.66 -156.45 -120.93 -250.49 -261.16 -277.64 -138.25 -167.84

% Excess over VaR 7.14% 5.62% 5.37% 6.48% 6.06% 6.01% 5.55% 5.96%
Kupiec Statistic 8.53** 0.77 0.28 4.25* 2.23 2.03 0.61 1.84
Average VaR -645.28 -646.27 -628.65 -804.74 -602.35 -487.66 -523.87 -654.40

Average Excess over VaR -442.71 -328.10 -288.33 -481.35 -396.94 -430.27 -306.07 -291.35
Maximum Excess over VaR -3248.10 -2149.87 -2311.30 -3105.26 -2944.25 -3407.71 -2157.20 -2167.59

Value-at-Risk Methods (α=5%)

Panel A: Back-Testing of Individual Bonds with Traditional Approach
(Sub-Sample where the Daily Gains and Losses are Calculated with Only Successive Prices at t  and t +1)

Panel B: Back-Testing of Individual Bonds with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

Panel C: Back-Testing of the Portfolio with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

 
Notes: The table reports a similar matched sample analysis as in Table 3, but in this case we use a rolling window of three months for the estimation of the 
dynamic term-structure model in Stage I. Panel A presents the results of the back-testing for VaR methods estimated individually for each bond in the portfolio, 
in which the back-test is performed using daily returns that are calculated with only successive prices that take place at t and t+1. Panel B and Panel C report the 
results of our ad-hoc back-testing procedure using equation (6) for VaR methods estimated for each bond individually in the portfolio and for the complete 
portfolio, respectively. We obtain VaR measures for all methods from October 2000 until December 2005 (i.e. in our sample from January 1999 three months 
are required in Stage I to obtain the initial values of the fair prices, plus one year and a half of a complete panel of returns are required to calculate the VaR 
measures). We present the VaR method of variance-covariance (Var-Cov Matrix), VaR method of exponential decay (RiskMetrics™), VaR GARCH method 
(GARCH(1,1)), VaR t-student distribution method (t-Student), VaR extreme value theory method static version (Static EVT), VaR extreme value theory method 
dynamic version (Dynamic EVT), VaR historical simulation method (Hist. Sim.); and VaR Monte Carlo simulation method (Monte Carlo) which are explained 
in detail in Appendix B.  ** and * denote significance at the 1% and 5% levels respectively in the Kupiec test.  
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Table 7. Back-Testing Summary Statistics for the VaR Methods with α=5% Using a Rolling Window of 12 months 

Var-Cov Matrix RiskMetricsTM GARCH(1,1) t - Student Hist. Sim. Static EVT Dynamic EVT Monte Carlo

% Excess over VaR 7.41% 5.74% 5.52% 7.30% 7.44% 7.04% 5.89% 6.59%
Kupiec Statistic 10.69** 1.11 0.55 9.80** 10.99** 7.79** 1.58 4.87*
Average VaR -48.16 -52.96 -46.59 -62.03 -48.85 -39.58 -42.08 -57.30

Average Excess over VaR -33.77 -23.32 -23.76 -26.77 -30.44 -37.85 -21.25 -29.27
Maximum Excess over VaR -233.91 -146.79 -116.04 -220.85 -211.00 -286.18 -117.93 -116.54

% Excess over VaR 8.10% 5.91% 5.64% 8.26% 7.86% 7.20% 6.03% 7.13%
Kupiec Statistic 17.16** 1.67 0.82 18.87** 14.78** 9.01** 2.10 8.46**
Average VaR -56.94 -54.64 -52.35 -74.56 -63.54 -49.87 -50.41 -55.49

Average Excess over VaR -37.64 -33.69 -31.90 -41.44 -35.94 -44.10 -29.90 -36.77
Maximum Excess over VaR -244.90 -196.91 -124.50 -213.45 -251.58 -242.13 -153.24 -194.85

% Excess over VaR 7.29% 5.56% 5.48% 7.16% 6.49% 6.22% 5.68% 7.02%
Kupiec Statistic 9.70** 0.63 0.46 8.73** 4.31* 2.90 0.93 7.64**
Average VaR -692.40 -711.82 -736.99 -772.04 -535.33 -525.38 -614.15 -649.98

Average Excess over VaR -473.74 -349.53 -307.01 -471.53 -484.91 -489.14 -337.11 -385.21
Maximum Excess over VaR -3305.00 -2514.06 -1998.39 -3487.28 -2860.06 -4023.60 -2073.53 -2218.59

Panel B: Back-Testing of Individual Bonds with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

Panel C: Back-Testing of the Portfolio with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

Value-at-Risk Methods (α=5%)

Panel A: Back-Testing of Individual Bonds with Traditional Approach
(Sub-Sample where the Daily Gains and Losses are Calculated with Only Successive Prices at t  and t +1)

 
Notes: The table reports a similar matched sample analysis as in Table 3, but in this case we use a rolling window of 12 months for the estimation of the dynamic 
term-structure model in Stage I. Panel A presents the results of the back-testing for VaR methods estimated individually for each bond in the portfolio, in which 
the back-test is performed using daily returns that are calculated with only successive prices that take place at t and t+1. Panel B and Panel C report the results of 
our ad-hoc back-testing procedure using equation (6) for VaR methods estimated for each bond individually in the portfolio and for the complete portfolio, 
respectively. We obtain VaR measures for all methods from July 2001 until December 2005 (i.e. in our sample from January 1999 twelve months are required in 
Stage I to obtain the initial values of the fair prices, plus one year and a half of a complete panel of returns are required to calculate the VaR measures). We 
present the VaR method of variance-covariance (Var-Cov Matrix), VaR method of exponential decay (RiskMetrics™), VaR GARCH method (GARCH(1,1)), 
VaR t-student distribution method (t-Student), VaR extreme value theory method static version (Static EVT), VaR extreme value theory method dynamic version 
(Dynamic EVT), VaR historical simulation method (Hist. Sim.); and VaR Monte Carlo simulation method (Monte Carlo) which are explained in detail in 
Appendix B.  ** and * denote significance at the 1% and 5% levels respectively in the Kupiec test.  
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Table 8. Back-Testing Summary Statistics for the VaR Methods with α=5% Under an Economy Generated Using Monte 
Carlo Simulations Where 60% of the Prices Are Missing 

Var-Cov Matrix RiskMetricsTM GARCH(1,1) t - Student Hist. Sim. Static EVT Dynamic EVT Monte Carlo

% Excess over VaR 6.89% 5.33% 5.29% 5.80% 5.65% 6.00% 5.23% 5.17%
Kupiec Statistic 6.76** 0.23 0.17 1.30 0.86 1.99 0.11 0.06
Average VaR -40.20 -36.65 -41.03 -52.43 -35.29 -28.55 -30.28 -40.29

Average Excess over VaR -21.46 -22.99 -19.53 -19.24 -24.30 -24.74 -16.60 -17.42
Maximum Excess over VaR -153.74 -119.19 -99.71 -174.76 -156.00 -209.96 -87.40 -105.95

% Excess over VaR 7.24% 5.47% 5.41% 6.45% 5.54% 6.22% 5.32% 5.27%
Kupiec Statistic 9.37** 0.44 0.35 4.05* 0.59 2.92 0.21 0.15
Average VaR -44.55 38.25 -36.43 -52.36 -49.61 -31.19 -35.29 -44.58

Average Excess over VaR -35.21 -26.64 -25.95 -29.37 -34.08 -30.99 -22.73 -23.71
Maximum Excess over VaR -187.86 -135.44 -104.21 -212.99 -180.01 -186.64 -108.39 -106.31

% Excess over VaR 5.93% 4.74% 4.83% 5.89% 5.78% 5.86% 5.15% 5.11%
Kupiec Statistic 1.71 0.14 0.06 1.57 1.22 1.49 0.05 0.03
Average VaR -517.07 -595.35 -540.72 -634.33 -488.40 -433.77 -440.25 -461.78

Average Excess over VaR -345.72 -260.30 -243.20 -422.85 -380.86 -392.83 -243.92 -237.61
Maximum Excess over VaR -2841.88 -1644.66 -1708.04 -2596.83 -2324.62 -2835.89 -1710.45 -1947.53

Panel B: Back-Testing of Individual Bonds with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

Value-at-Risk Methods (α=5%)

Panel A: Back-Testing of Individual Bonds with Traditional Approach
(Sub-Sample where the Daily Gains and Losses are Calculated with Only Successive Prices at t  and t +1)

Panel C: Back-Testing of the Portfolio with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

 
Notes: The table reports a similar matched sample analysis as in Table 3, the data used was generated using the stochastic process assumed in Stage I. We 
simulate 100 years of daily data through forward vectors of state variables yt using equation (A-4) using for the model the average parameters shown in Table 
A.1. Afterwards, we delete 60% of the data and we perform our complete methodology (i.e., Stage I, Stage II and Stage III). Panel A presents the results of the 
back-testing for VaR methods estimated individually for each bond in the portfolio, in which the back-test is performed using daily returns that are calculated 
with only successive prices that take place at t and t+1. Panel B and Panel C report the results of our ad-hoc back-testing procedure using equation (6) for VaR 
methods estimated for each bond individually in the portfolio and for the complete portfolio, respectively. We obtain VaR measures for all methods using our 
simulated data. We present the VaR method of variance-covariance (Var-Cov Matrix), VaR method of exponential decay (RiskMetrics™), VaR GARCH method 
(GARCH(1,1)), VaR t-student distribution method (t-Student), VaR extreme value theory method static version (Static EVT), VaR extreme value theory method 
dynamic version (Dynamic EVT), VaR historical simulation method (Hist. Sim.); and VaR Monte Carlo simulation method (Monte Carlo) which are explained 
in detail in Appendix B.  ** and * denote significance at the 1% and 5% levels respectively in the Kupiec test.  
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Table 9. Back-Testing Summary Statistics for the VaR Methods with α=5% Under an Economy Generated Using Monte 
Carlo Simulations Where 30% of the Prices Are Missing 

Var-Cov Matrix RiskMetricsTM GARCH(1,1) t - Student Hist. Sim. Static EVT Dynamic EVT Monte Carlo

% Excess over VaR 6.71% 5.21% 5.19% 5.62% 5.59% 5.86% 4.81% 5.17%
Kupiec Statistic 5.61* 0.09 0.08 0.78 0.71 1.47 0.08 0.06
Average VaR -41.07 -32.87 -31.25 -37.95 -41.23 -30.31 -29.10 -36.46

Average Excess over VaR -24.46 -19.54 -16.66 -21.84 -23.79 -26.10 -15.17 -18.84
Maximum Excess over VaR -173.38 -97.10 -86.24 -168.48 -148.67 -194.10 -93.90 -98.57

% Excess over VaR 7.03% 5.31% 5.55% 5.81% 6.40% 6.17% 5.23% 5.20%
Kupiec Statistic 7.76** 0.20 0.62 1.31 3.82 2.71 0.11 0.08
Average VaR -42.05 -34.20 -44.14 -44.52 -49.96 -32.94 -31.08 -42.59

Average Excess over VaR -31.64 -25.35 -23.98 -27.64 -31.06 -35.45 -27.05 -26.81
Maximum Excess over VaR -187.52 -134.30 -95.89 -170.23 -215.77 -167.80 -93.91 -107.38

% Excess over VaR 5.86% 5.18% 5.15% 5.45% 5.48% 5.59% 4.89% 5.14%
Kupiec Statistic 1.49 0.06 0.05 0.41 0.48 0.71 0.03 0.04
Average VaR -546.39 -519.87 -550.85 -580.85 -470.53 -335.04 -360.57 -523.16

Average Excess over VaR -423.42 -270.69 -259.29 -322.13 -286.46 -405.42 -249.20 -270.70
Maximum Excess over VaR -2078.09 -1559.27 -1538.31 -2466.60 -2734.43 -2516.94 -1548.00 -1730.41

Panel B: Back-Testing of Individual Bonds with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

Panel C: Back-Testing of the Portfolio with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

Value-at-Risk Methods (α=5%)

Panel A: Back-Testing of Individual Bonds with Traditional Approach
(Sub-Sample where the Daily Gains and Losses are Calculated with Only Successive Prices at t  and t +1)

 
Notes: The table reports a similar matched sample analysis as in Table 3, the data used was generated using the stochastic process assumed in Atage I. We 
simulate 100 years of daily data through forward vectors of state variables yt using equation (A-4) using for the model the average parameters shown in Table 
A.1. Afterwards, we delete 30% of the data and we perform our complete methodology (i.e., Stage I, Stage II and Stage III). Panel A presents the results of the 
back-testing for VaR methods estimated individually for each bond in the portfolio, in which the back-test is performed using daily returns that are calculated 
with only successive prices that take place at t and t+1. Panel B and Panel C report the results of our ad-hoc back-testing procedure using equation (6) for VaR 
methods estimated for each bond individually in the portfolio and for the complete portfolio, respectively. We obtain VaR measures for all methods using our 
simulated data. We present the VaR method of variance-covariance (Var-Cov Matrix), VaR method of exponential decay (RiskMetrics™), VaR GARCH method 
(GARCH(1,1)), VaR t-student distribution method (t-Student), VaR extreme value theory method static version (Static EVT), VaR extreme value theory method 
dynamic version (Dynamic EVT), VaR historical simulation method (Hist. Sim.); and VaR Monte Carlo simulation method (Monte Carlo) which are explained 
in detail in Appendix B.  ** and * denote significance at the 1% and 5% levels respectively in the Kupiec test.  
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Table A.1. Summary Statistics of the Daily Averages of the Parameters Estimated and 
State Variables of the Dynamic Term-Structure Model of Interest Rates 

Parameters
Mean 

Parameter 
 Stand. Desv. 
Parameters 

Mean Stand. 
Errors 

κ1 0.019 4.51E-03 1.58E-04

κ2 0.942 1.71E-02 1.91E-02

κ3 1.964 5.37E-02 6.39E-02

σ1 0.017 2.30E-04 2.17E-04
σ2 0.175 2.79E-03 5.35E-03
σ3 0.196 3.92E-03 6.18E-03
ρ12 -0.699 1.09E-02 1.57E-02
ρ13 0.388 9.76E-03 8.37E-03
ρ23 -0.826 2.12E-03 4.84E-03
δ 0.051 4.11E-02 3.73E-02

λ1 0.000 1.07E-05 3.74E-05

λ2 -0.016 3.75E-03 5.80E-03

λ3 -0.023 8.38E-03 1.97E-02

y1 -0.052 6.87E-03 5.78E-03

y2 -0.005 6.90E-02 2.92E-02

y3 0.016 7.83E-02 4.68E-02  
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Table B.1. Summary Statistics of Price Errors (between Fair and Market Prices) and Return Errors (between Fair and 
Market Returns) between July 1999 and December 2005 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Mean of Errors -1.11E-02 1.53E-02 -2.36E-02 -2.97E-02 -3.93E-02 -7.11E-02 4.89E-02 1.50E-01 1.73E-02 -1.15E-02 -7.90E-02 -7.23E-02 -1.75E-01 -1.02E-01 -1.83E-01 -1.11E-01 -8.85E-02 -4.67E-02 1.22E-01 1.76E-01
Std. Dev. of Errors 1.18E-01 1.79E-01 2.47E-01 2.76E-01 3.46E-01 3.07E-01 3.53E-01 3.53E-01 4.27E-01 2.35E-01 3.72E-01 3.04E-01 4.14E-01 3.63E-01 4.35E-01 4.05E-01 4.06E-01 3.96E-01 4.62E-01 5.47E-01

t-statistic -1.59 1.87 -2.11* -2.96** -2.74** -5.91** 4.35** 14.84** 1.38 -1.21 -3.88** -5.43** -7.72** -6.83** -8.28** -5.61** -4.05** -2.42* 6.90** 9.18**
MAE 6.43E-02 1.06E-01 1.44E-01 1.48E-01 1.98E-01 1.92E-01 2.14E-01 2.41E-01 2.65E-01 1.48E-01 2.28E-01 2.06E-01 2.75E-01 2.41E-01 3.15E-01 2.79E-01 2.52E-01 2.65E-01 3.47E-01 4.11E-01

RMSE 1.18E-01 1.79E-01 2.47E-01 2.78E-01 3.48E-01 3.15E-01 3.56E-01 3.84E-01 4.60E-01 2.35E-01 3.80E-01 3.13E-01 4.49E-01 3.77E-01 4.71E-01 4.19E-01 4.15E-01 3.99E-01 4.78E-01 5.74E-01

Mean of Errors -2.18E-05 1.22E-04 1.93E-04 7.08E-05 -8.01E-05 8.17E-05 -2.72E-05 -1.61E-05 1.52E-05 5.14E-05 2.69E-04 -1.04E-04 2.07E-04 7.27E-05 3.88E-04 2.32E-04 6.09E-05 6.93E-05 3.40E-05 -9.15E-05
Std. Dev. of Errors 1.16E-03 2.39E-03 2.93E-03 2.81E-03 4.22E-03 3.09E-03 3.44E-03 2.23E-03 3.04E-03 1.86E-03 3.76E-03 2.10E-03 2.79E-03 2.17E-03 2.63E-03 4.07E-03 2.58E-03 3.46E-03 3.46E-03 3.44E-03

t-statistic -0.17 0.70 0.95 0.54 -0.32 0.50 -0.22 -0.23 0.08 0.51 0.76 -0.78 0.77 0.60 1.88 0.80 0.29 0.27 0.21 -0.64
MAE 6.17E-04 1.28E-03 1.67E-03 1.62E-03 2.07E-03 1.75E-03 1.89E-03 1.44E-03 1.79E-03 1.15E-03 1.82E-03 1.44E-03 1.82E-03 1.43E-03 1.81E-03 2.27E-03 1.87E-03 2.40E-03 2.35E-03 2.34E-03

RMSE 1.16E-03 2.39E-03 2.92E-03 2.81E-03 4.22E-03 3.09E-03 3.44E-03 2.23E-03 3.04E-03 1.86E-03 3.76E-03 2.10E-03 2.79E-03 2.16E-03 2.65E-03 4.06E-03 2.57E-03 3.45E-03 3.46E-03 3.43E-03

Bond Maturities in Years

Panel A: Bond Price Errors 
(Between Fair and Market Prices)

Panel B: Bond Return Errors 
(Between Fair and Market Returns Calculated with Only Successive Prices at t and t+1)

 
Notes: Panel A (Panel B) provides summary statistics of price errors between fair and market prices (returns) for our complete sample. We calculate summary 
statistics from July 1999 until December 2005 (i.e. in our sample from January 1999 six months are required in Stage I to obtain the initial values of the fair 
prices). Return errors are calculated with fair and market returns using only successive prices (i.e. at t and t+1). We report the mean of errors, the standard 
deviation of errors, t-statistics, the mean of the absolute value of errors (MAE), and the root mean of the squared errors (RMSE). Finally, ** and * denote 
significance at the 1% and 5% levels for the t-test, respectively. 
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Table B.2. Summary Statistics of Price Errors (between Fair and Market Prices) and Return Errors (between Fair and 
Market Returns) between July 1999 and September 2002 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Mean of Errors -1.20E-02 1.60E-02 -2.18E-02 -3.11E-02 -4.14E-02 -7.59E-02 5.42E-02 1.61E-01 1.77E-02 -1.08E-02 -8.31E-02 -6.39E-02 -1.55E-01 -8.65E-02 -1.74E-01 -1.12E-01 -9.38E-02 -4.29E-02 1.29E-01 1.83E-01
Std. Dev. of Errors 1.17E-01 1.82E-01 2.51E-01 3.06E-01 3.39E-01 3.15E-01 3.68E-01 4.12E-01 4.45E-01 1.92E-01 3.89E-01 2.97E-01 3.96E-01 4.11E-01 3.99E-01 4.19E-01 4.33E-01 3.83E-01 4.07E-01 5.87E-01

t-statistic -1.21 1.35 -1.36 -1.98* -2.09* -4.34** 3.27** 9.65** 0.651867 -0.99482 -2.76** -3.48** -5.05** -3.61** -6.05** -3.86** -2.84** -1.62 5.88** 6.30**
MAE 6.28E-02 8.76E-02 1.42E-01 1.43E-01 2.01E-01 1.66E-01 2.27E-01 2.36E-01 2.43E-01 1.52E-01 2.03E-01 1.83E-01 2.48E-01 2.42E-01 2.86E-01 2.79E-01 2.52E-01 2.28E-01 3.41E-01 4.32E-01

RMSE 1.15E-01 1.95E-01 2.07E-01 2.83E-01 3.17E-01 3.41E-01 3.18E-01 3.79E-01 5.13E-01 2.32E-01 3.59E-01 3.11E-01 4.32E-01 4.12E-01 4.81E-01 4.54E-01 4.37E-01 3.21E-01 5.09E-01 5.82E-01

Mean of Errors -2.22E-05 1.15E-04 1.87E-04 6.32E-05 -7.52E-05 7.63E-05 -2.46E-05 -1.60E-05 1.57E-05 5.39E-05 2.57E-04 -9.13E-05 2.06E-04 7.60E-05 4.16E-04 2.49E-04 6.73E-05 7.33E-05 3.03E-05 -7.96E-05
Std. Dev. of Errors 1.12E-03 2.20E-03 2.92E-03 2.80E-03 4.56E-03 3.18E-03 2.87E-03 2.11E-03 3.47E-03 2.11E-03 4.07E-03 1.80E-03 2.58E-03 1.94E-03 2.39E-03 4.28E-03 2.62E-03 3.55E-03 3.42E-03 3.14E-03

t-statistic -0.13 0.50 0.65 0.34 -0.19 0.32 -0.16 -0.17 0.04 0.33 0.47 -0.56 0.58 0.49 1.57 0.57 0.22 0.19 0.13 -0.42
MAE 6.22E-04 1.24E-03 1.79E-03 1.54E-03 2.15E-03 1.95E-03 1.92E-03 1.59E-03 1.76E-03 9.84E-04 1.49E-03 1.32E-03 1.84E-03 1.25E-03 1.86E-03 2.22E-03 1.81E-03 2.47E-03 2.24E-03 2.20E-03

RMSE 1.16E-03 2.59E-03 2.78E-03 3.19E-03 4.34E-03 2.78E-03 3.83E-03 1.95E-03 2.66E-03 1.77E-03 3.66E-03 1.95E-03 2.56E-03 2.04E-03 2.83E-03 3.51E-03 2.44E-03 3.19E-03 3.55E-03 3.55E-03

Bond Maturities in Years

Panel A: Bond Price Errors 
(Between Fair and Market Prices)

Panel B: Bond Return Errors 
(Between Fair and Market Returns Calculated with Only Successive Prices at t and t+1)

 
Notes: Panel A (Panel B) provides summary statistics of measurement errors between fair and market prices (returns) for our complete sample. We calculate 
summary statistics from July 1999 until September 2002 (i.e. in our sample from January 1999 six months are required in Stage I to obtain the initial values of 
the fair prices). Return errors are calculated with fair and market returns using only successive prices (i.e. at t and t+1). We report the mean of errors, the 
standard deviation of errors, t-statistics, the mean of the absolute value of errors (MAE), and the root mean of the squared errors (RMSE). Finally, ** and * denote 
significance at the 1% and 5% levels for the t-test, respectively. 
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Table B.3.  Summary Statistics of Price Errors (between Fair and Market Prices) and Return Errors (between Fair and 
Market Returns) between October 2002 and December 2005 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Mean of Errors -9.96E-03 1.43E-02 -2.59E-02 -2.76E-02 -3.69E-02 -6.60E-02 4.50E-02 1.41E-01 1.69E-02 -1.17E-02 -7.71E-02 -8.10E-02 -1.96E-01 -1.15E-01 -1.92E-01 -1.11E-01 -8.51E-02 -5.13E-02 1.14E-01 1.72E-01
Std. Dev. of Errors 1.18E-01 1.69E-01 2.41E-01 2.48E-01 3.52E-01 3.00E-01 3.34E-01 2.97E-01 4.17E-01 2.74E-01 3.57E-01 3.13E-01 4.47E-01 3.08E-01 4.70E-01 4.01E-01 3.95E-01 4.11E-01 5.16E-01 5.17E-01

t-statistic -1.01 1.31 -1.68 -2.16** -1.79 -3.96** 2.99** 11.73** 0.66 -0.75 -2.79** -4.18** -5.65** -6.40** -5.68** -3.99** -2.82** -1.81 4.10** 6.71**
MAE 6.76E-02 1.25E-01 1.46E-01 1.54E-01 1.95E-01 2.14E-01 2.05E-01 2.47E-01 2.98E-01 1.46E-01 2.51E-01 2.24E-01 3.08E-01 2.36E-01 3.38E-01 2.82E-01 2.52E-01 3.12E-01 3.52E-01 4.07E-01

RMSE 1.17E-01 1.58E-01 2.87E-01 2.71E-01 3.70E-01 2.89E-01 3.93E-01 3.79E-01 4.06E-01 2.33E-01 4.02E-01 3.25E-01 4.60E-01 3.39E-01 4.59E-01 3.97E-01 4.01E-01 4.76E-01 4.53E-01 5.62E-01

Mean of Errors -2.15E-05 1.32E-04 2.07E-04 7.92E-05 -8.50E-05 8.81E-05 -3.03E-05 -1.61E-05 1.49E-05 5.11E-05 2.85E-04 -1.17E-04 2.12E-04 6.89E-05 3.72E-04 2.07E-04 5.53E-05 6.66E-05 3.94E-05 -9.96E-05
Std. Dev. of Errors 1.25E-03 2.53E-03 3.05E-03 2.90E-03 3.78E-03 2.95E-03 4.00E-03 2.27E-03 2.59E-03 1.62E-03 3.41E-03 2.39E-03 2.99E-03 2.38E-03 2.83E-03 3.82E-03 2.60E-03 3.28E-03 3.56E-03 3.69E-03

t-statistic -0.11 0.50 0.69 0.41 -0.26 0.39 -0.14 -0.16 0.06 0.41 0.63 -0.54 0.52 0.36 1.18 0.53 0.18 0.19 0.16 -0.45
MAE 6.00E-04 1.32E-03 1.52E-03 1.65E-03 1.96E-03 1.52E-03 1.82E-03 1.27E-03 1.82E-03 1.31E-03 2.11E-03 1.58E-03 1.76E-03 1.61E-03 1.77E-03 2.25E-03 1.88E-03 2.34E-03 2.49E-03 2.53E-03

RMSE 1.13E-03 2.15E-03 3.13E-03 2.39E-03 4.11E-03 3.36E-03 3.02E-03 2.59E-03 3.52E-03 1.90E-03 3.75E-03 2.20E-03 2.93E-03 2.37E-03 2.40E-03 4.70E-03 2.61E-03 3.72E-03 3.49E-03 3.34E-03

Bond Maturities in Years

Panel A: Bond Price Errors 
(Between Fair and Market Prices)

Panel B: Bond Return Errors 
(Between Fair and Market Returns Calculated with Only Successive Prices at t and t+1)

 
Notes: Panel A (Panel B) provides summary statistics of measurement errors between fair and market prices (returns) for our complete sample. We calculate 
summary statistics from October 2002 until December 2005. Return errors are calculated with fair and market returns using only successive prices (i.e. at t and 
t+1). We report the mean of errors, the standard deviation of errors, t-statistics, the mean of the absolute value of errors (MAE), and the root mean of the squared 
errors (RMSE). Finally, ** and * denote significance at the 1% and 5% levels for the t-test, respectively. 
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Table D.1.  Back-Testing Summary Statistics for the VaR Methods with α=5% against the Bond Market Data from the 
Santiago Stock Exchange between January 2001 and June 2003 

Var-Cov Matrix RiskMetricsTM GARCH(1,1) t - Student Hist. Sim. Static EVT Dynamic EVT Monte Carlo

% Excess over VaR 7.02% 5.83% 4.55% 6.48% 5.91% 6.14% 5.69% 6.16%
Kupiec Statistic 7.68** 1.38 0.43 4.21* 1.66 2.58 0.95 2.66
Average VaR -44.16 -43.90 -42.54 -52.60 -39.25 -32.87 -38.16 -46.58

Average Excess over VaR -26.33 -25.07 -25.11 -24.86 -27.47 -30.25 -18.56 -18.84
Maximum Excess over VaR -187.42 -148.44 -113.78 -194.71 -197.54 -224.31 -111.66 -107.93

% Excess over VaR 7.12% 5.81% 4.75% 6.85% 7.17% 6.14% 6.25% 6.34%
Kupiec Statistic 8.43** 1.32 0.12 6.46* 8.81** 2.54 3.04 3.49
Average VaR -46.58 -51.22 -49.05 -58.02 -47.11 -41.61 -45.50 -48.06

Average Excess over VaR -39.92 -27.09 -30.19 -34.12 -36.99 -39.37 -26.77 -29.86
Maximum Excess over VaR -187.71 -169.39 -112.47 -207.57 -231.09 -231.72 -134.49 -107.11

% Excess over VaR 7.40% 5.07% 4.83% 6.13% 5.39% 5.30% 5.33% 5.28%
Kupiec Statistic 10.60** 0.01 0.06 2.53 0.31 0.18 0.22 0.15
Average VaR -614.63 -601.26 -543.78 -715.47 -531.37 -495.97 -515.85 -507.21

Average Excess over VaR -470.53 -305.70 -311.83 -392.75 -381.54 -382.15 -273.48 -306.68
Maximum Excess over VaR -2848.48 -1844.61 -1831.94 -2967.67 -3099.92 -3224.39 -2086.13 -1733.54

Value-at-Risk Methods (α=5%)

Panel A: Back-Testing of Individual Bonds with the Traditional Approach
(Sub-Sample where the Daily Gains and Losses are Calculated with Only Successive Prices at t  and t +1)

Panel B: Back-Testing of Individual Bonds with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

Panel C: Back-Testing of the Portfolio with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

 
Notes: Panel A presents the results of the back-testing for VaR methods estimated individually for each bond in the portfolio, in which the back-test is performed 
using daily returns that are calculated with only successive prices that take place at t and t+1. Panel B and Panel C report the results of our ad-hoc back-testing 
procedure using equation (6) for VaR methods estimated for each bond individually in the portfolio and for the complete portfolio, respectively. We obtain VaR 
measures for all methods from January 2001 until June 2003 (i.e. in our sample from January 1999 six months are required in Stage I to obtain the initial values 
of the fair prices, plus one year and a half of a complete panel of returns are required to calculate the VaR measures). We present the VaR method of variance-
covariance (Var-Cov Matrix), VaR method of exponential decay (RiskMetrics™), VaR GARCH method (GARCH(1,1)), VaR t-student distribution method (t-
Student), VaR extreme value theory method static version (Static EVT), VaR extreme value theory method dynamic version (Dynamic EVT), VaR historical 
simulation method (Hist. Sim.); and VaR Monte Carlo simulation method (Monte Carlo) which are explained in detail in Appendix B.  ** and * denote 
significance at the 1% and 5% levels respectively in the Kupiec test.  
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Table D.2.  Back-Testing Summary Statistics for the VaR Methods with α=5% against the Bond Market Data from the 
Santiago Stock Exchange between July 2003 and December 2005 

Var-Cov Matrix RiskMetricsTM GARCH(1,1) t - Student Hist. Sim. Static EVT Dynamic EVT Monte Carlo

% Excess over VaR 7.60% 5.43% 4.96% 6.28% 6.54% 5.87% 5.93% 5.75%
Kupiec Statistic 12.36** 0.34 0.00 2.94 3.91* 1.79 1.75 1.09
Average VaR -43.98 -39.76 -45.39 -51.83 -41.05 -33.73 -37.10 -44.46

Average Excess over VaR -24.89 -21.05 -21.99 -21.86 -26.53 -31.33 -22.00 -20.80
Maximum Excess over VaR -184.02 -127.23 -96.78 -214.20 -177.16 -223.24 -105.78 -104.34

% Excess over VaR 8.82% 5.74% 5.10% 6.48% 6.05% 6.65% 6.14% 6.23%
Kupiec Statistic 25.26** 1.11 0.01 4.22* 2.16 5.24* 2.54 2.95
Average VaR -48.91 -43.60 -48.91 -57.93 -52.83 -41.44 -47.62 -47.26

Average Excess over VaR -31.61 -29.93 -31.07 -37.60 -34.57 -36.03 -27.85 -30.63
Maximum Excess over VaR -191.08 -138.95 -110.78 -218.64 -212.03 -234.67 -123.27 -120.28

% Excess over VaR 6.67% 5.17% 4.24% 5.98% 6.02% 6.71% 5.83% 6.14%
Kupiec Statistic 5.34* 0.06 1.26 1.92 2.05 5.61 1.38 2.58
Average VaR -668.61 -605.99 -649.99 -635.46 -517.42 -430.12 -524.94 -592.28

Average Excess over VaR -387.53 -294.58 -236.79 -464.25 -406.38 -474.15 -271.44 -257.58
Maximum Excess over VaR -2887.52 -2068.99 -2120.66 -2770.53 -2602.08 -3004.81 -2016.67 -2237.20

Value-at-Risk Methods (α=5%)

Panel A: Back-Testing of Individual Bonds with the Traditional Approach
(Sub-Sample where the Daily Gains and Losses are Calculated with Only Successive Prices at t  and t +1)

Panel B: Back-Testing of Individual Bonds with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

Panel C: Back-Testing of the Portfolio with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

 
Notes: Panel A presents the results of the back-testing for VaR methods estimated individually for each bond in the portfolio, in which the back-test is performed 
using daily returns that are calculated with only successive prices that take place at t and t+1. Panel B and Panel C report the results of our ad-hoc back-testing 
procedure using equation (6) for VaR methods estimated for each bond individually in the portfolio and for the complete portfolio, respectively. We obtain VaR 
measures for all methods from July 2003 until June 2005. We present the VaR method of variance-covariance (Var-Cov Matrix), VaR method of exponential 
decay (RiskMetrics™), VaR GARCH method (GARCH(1,1)), VaR t-student distribution method (t-Student), VaR extreme value theory method static version 
(Static EVT), VaR extreme value theory method dynamic version (Dynamic EVT), VaR historical simulation method (Hist. Sim.); and VaR Monte Carlo 
simulation method (Monte Carlo) which are explained in detail in Appendix B.  ** and * denote significance at the 1% and 5% levels respectively in the Kupiec 
test.  
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Table D.3.  Back-Testing Summary Statistics for the VaR Methods with α=1% against the Bond Market Data from the 
Santiago Stock Exchange between January 2001 and June 2003 

Var-Cov Matrix RiskMetricsTM GARCH(1,1) t - Student Hist. Sim. Static EVT Dynamic EVT Monte Carlo

% Excess over VaR 3.47% 1.95% 1.70% 3.22% 2.76% 2.09% 1.17% 2.24%
Kupiec Statistic 37.60** 7.18** 4.09* 31.51** 21.17** 9.10** 0.28 11.42**
Average VaR -76.70 -62.54 -57.99 -74.69 -70.59 -78.16 -41.87 -73.70

Average Excess over VaR -26.15 -13.92 -21.25 -28.32 -29.36 -26.67 -19.73 -20.35
Maximum Excess over VaR -156.10 -90.51 -89.33 -166.95 -131.09 -150.40 -57.54 -82.52

% Excess over VaR 2.99% 2.22% 1.97% 3.02% 2.56% 2.47% 1.24% 2.48%
Kupiec Statistic 26.26** 11.11** 7.40** 26.78** 17.10** 15.42** 0.53 15.58**
Average VaR -87.14 -72.11 -72.07 -75.82 -84.06 -83.92 -47.37 -87.95

Average Excess over VaR -30.30 -15.04 -24.76 -33.08 -27.16 -25.67 -22.32 -23.43
Maximum Excess over VaR -188.31 -100.50 -112.34 -184.91 -148.55 -187.63 -62.68 -97.29

% Excess over VaR 2.80% 1.66% 1.74% 2.72% 2.41% 1.86% 1.35% 1.89%
Kupiec Statistic 21.91** 3.65** 4.48* 20.28** 14.35** 6.01* 1.13 6.40*
Average VaR -912.63 -929.96 -904.33 -961.15 -1315.36 -1291.23 -771.66 -1097.91

Average Excess over VaR -485.06 -304.83 -315.02 -459.79 -495.41 -461.33 -248.67 -291.50
Maximum Excess over VaR -2411.69 -1312.19 -1415.18 -2684.39 -2104.60 -1728.92 -1130.52 -1664.89

Value-at-Risk Methods (α=1%)

Panel A: Back-Testing of Individual Bonds with the Traditional Approach
(Sub-Sample where the Daily Gains and Losses are Calculated with Only Successive Prices at t  and t +1)

Panel B: Back-Testing of Individual Bonds with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

Panel C: Back-Testing of the Portfolio with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

 
Notes: Panel A presents the results of the back-testing for VaR methods estimated individually for each bond in the portfolio, in which the back-test is performed 
using daily returns that are calculated with only successive prices that take place at t and t+1. Panel B and Panel C report the results of our ad-hoc back-testing 
procedure using equation (6) for VaR methods estimated for each bond individually in the portfolio and for the complete portfolio, respectively. We obtain VaR 
measures for all methods from January 2001 until June 2003 (i.e. in our sample from January 1999 six months are required in Stage I to obtain the initial values 
of the fair prices, plus one year and a half of a complete panel of returns are required to calculate the VaR measures). We present the VaR method of variance-
covariance (Var-Cov Matrix), VaR method of exponential decay (RiskMetrics™), VaR GARCH method (GARCH(1,1)), VaR t-student distribution method (t-
Student), VaR extreme value theory method static version (Static EVT), VaR extreme value theory method dynamic version (Dynamic EVT), VaR historical 
simulation method (Hist. Sim.); and VaR Monte Carlo simulation method (Monte Carlo) which are explained in detail in Appendix B.  ** and * denote 
significance at the 1% and 5% levels respectively in the Kupiec test.  
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Table D.4. Back-Testing Summary Statistics for the VaR Methods with α=1% against the Bond Market Data from the 
Santiago Stock Exchange between July 2003 and December 2005 

Var-Cov Matrix RiskMetricsTM GARCH(1,1) t - Student Hist. Sim. Static EVT Dynamic EVT Monte Carlo

% Excess over VaR 2.74% 2.25% 1.83% 2.58% 2.51% 2.35% 1.40% 2.42%
Kupiec Statistic 20.79** 11.62** 5.59* 17.52** 16.25** 13.42** 1.45 14.54**
Average VaR -79.53 -66.64 -54.54 -71.83 -75.06 -81.74 -49.66 -69.18

Average Excess over VaR -30.38 -12.57 -22.68 -28.98 -25.12 -25.81 -17.25 -23.19
Maximum Excess over VaR -161.43 -93.38 -100.75 -165.16 -142.09 -178.95 -68.59 -93.62

% Excess over VaR 3.60% 2.02% 2.18% 3.22% 2.88% 2.16% 1.41% 2.43%
Kupiec Statistic 40.96** 8.04** 10.59** 31.48** 23.70** 10.28** 1.53 14.80**
Average VaR -85.72 -76.65 -63.29 -90.96 -85.96 -79.99 -50.94 -79.84

Average Excess over VaR -31.59 -12.63 -25.78 -29.32 -30.14 -28.90 -19.42 -23.42
Maximum Excess over VaR -180.56 -98.96 -113.43 -171.06 -139.59 -192.29 -69.57 -98.34

% Excess over VaR 2.97% 1.88% 1.66% 2.37% 2.39% 2.37% 1.03% 1.97%
Kupiec Statistic 25.63** 6.24* 3.70 13.64** 13.97** 13.61** 0.01 7.41**
Average VaR -921.04 -757.53 -792.79 -1031.75 -1298.70 -1192.79 -882.00 -1001.06

Average Excess over VaR -440.38 -278.19 -284.98 -462.93 -395.11 -462.17 -287.61 -307.17
Maximum Excess over VaR -2692.31 -1244.61 -1505.22 -2421.01 -1571.60 -2044.88 -1161.48 -1263.19

Value-at-Risk Methods (α=1%)

Panel A: Back-Testing of Individual Bonds with the Traditional Approach
(Sub-Sample where the Daily Gains and Losses are Calculated with Only Successive Prices at t  and t +1)

Panel B: Back-Testing of Individual Bonds with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

Panel C: Back-Testing of the Portfolio with Ad-Hoc  Procedure 
(Complete Sample where the Daily Gains and Losses are Calculated with Consecutive Prices at t  and t+d +1)

 
Notes: Panel A presents the results of the back-testing for VaR methods estimated individually for each bond in the portfolio, in which the back-test is performed 
using daily returns that are calculated with only successive prices that take place at t and t+1. Panel B and Panel C report the results of our ad-hoc back-testing 
procedure using equation (6) for VaR methods estimated for each bond individually in the portfolio and for the complete portfolio, respectively. We obtain VaR 
measures for all methods from July 2003 until June 2005. We present the VaR method of variance-covariance (Var-Cov Matrix), VaR method of exponential 
decay (RiskMetrics™), VaR GARCH method (GARCH(1,1)), VaR t-student distribution method (t-Student), VaR extreme value theory method static version 
(Static EVT), VaR extreme value theory method dynamic version (Dynamic EVT), VaR historical simulation method (Hist. Sim.); and VaR Monte Carlo 
simulation method (Monte Carlo) which are explained in detail in Appendix B.  ** and * denote significance at the 1% and 5% levels respectively in the Kupiec 
test.  

 


